scholarly journals Spatial rearrangement of the Streptomyces venezuelae linear chromosome during sporogenic development

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marcin J. Szafran ◽  
Tomasz Małecki ◽  
Agnieszka Strzałka ◽  
Katarzyna Pawlikiewicz ◽  
Julia Duława ◽  
...  

AbstractBacteria of the genus Streptomyces have a linear chromosome, with a core region and two ‘arms’. During their complex life cycle, these bacteria develop multi-genomic hyphae that differentiate into chains of exospores that carry a single copy of the genome. Sporulation-associated cell division requires chromosome segregation and compaction. Here, we show that the arms of Streptomyces venezuelae chromosomes are spatially separated at entry to sporulation, but during sporogenic cell division they are closely aligned with the core region. Arm proximity is imposed by segregation protein ParB and condensin SMC. Moreover, the chromosomal terminal regions are organized into distinct domains by the Streptomyces-specific HU-family protein HupS. Thus, as seen in eukaryotes, there is substantial chromosomal remodelling during the Streptomyces life cycle, with the chromosome undergoing rearrangements from an ‘open’ to a ‘closed’ conformation.

2020 ◽  
Author(s):  
MJ. Szafran ◽  
T. Małecki ◽  
A. Strzałka ◽  
K. Pawlikiewicz ◽  
J. Duława ◽  
...  

ABSTRACTDepending on the species, bacteria organize their chromosomes with either spatially separated or closely juxtaposed replichores. However, in contrast to eukaryotes, significant changes in bacterial chromosome conformation during the cell cycle have not been demonstrated to date. Streptomyces are unique among bacteria due to their linear chromosomes and complex life cycle. These bacteria develop multigenomic hyphae that differentiate into chains of unigenomic exospores. Only during sporulation-associated cell division, chromosomes are segregated and compacted. In this study, we show that at entry to sporulation, arms of S. venezuelae chromosomes are spatially separated, but they are closely aligned within the core region during sporogenic cell division. Arm juxtaposition is imposed by the segregation protein ParB and condensin SMC. Moreover, we disclose that the chromosomal terminal regions are organized into domains by the Streptomyces-specific protein - HupS. Thus, we demonstrate chromosomal rearrangement from open to close conformation during Streptomyces life cycle.


mBio ◽  
2013 ◽  
Vol 4 (5) ◽  
Author(s):  
Matthew J. Bush ◽  
Maureen J. Bibb ◽  
Govind Chandra ◽  
Kim C. Findlay ◽  
Mark J. Buttner

ABSTRACTWhiA is a highly unusual transcriptional regulator related to a family of eukaryotic homing endonucleases. WhiA is required for sporulation in the filamentous bacteriumStreptomyces, but WhiA homologues of unknown function are also found throughout the Gram-positive bacteria. To better understand the role of WhiA inStreptomycesdevelopment and its function as a transcription factor, we identified the WhiA regulon through a combination of chromatin immunoprecipitation-sequencing (ChIP-seq) and microarray transcriptional profiling, exploiting a new model organism for the genus,Streptomyces venezuelae, which sporulates in liquid culture. The regulon encompasses ~240 transcription units, and WhiA appears to function almost equally as an activator and as a repressor. Bioinformatic analysis of the upstream regions of the complete regulon, combined with DNase I footprinting, identified a short but highly conserved asymmetric sequence, GACAC, associated with the majority of WhiA targets. Construction of a null mutant showed thatwhiAis required for the initiation of sporulation septation and chromosome segregation inS. venezuelae, and several genes encoding key proteins of theStreptomycescell division machinery, such asftsZ,ftsW, andftsK, were found to be directly activated by WhiA during development. Several other genes encoding proteins with important roles in development were also identified as WhiA targets, including the sporulation-specific sigma factor σWhiGand the diguanylate cyclase CdgB. Cell division is tightly coordinated with the orderly arrest of apical growth in the sporogenic cell, andfilP, encoding a key component of the polarisome that directs apical growth, is a direct target for WhiA-mediated repression during sporulation.IMPORTANCESince the initial identification of the genetic loci required forStreptomycesdevelopment, all of thebldandwhidevelopmental master regulators have been cloned and characterized, and significant progress has been made toward understanding the cell biological processes that drive morphogenesis. A major challenge now is to connect the cell biological processes and the developmental master regulators by dissecting the regulatory networks that link the two. Studies of these regulatory networks have been greatly facilitated by the recent introduction ofStreptomyces venezuelaeas a new model system for the genus, a species that sporulates in liquid culture. Taking advantage ofS. venezuelae, we have characterized the regulon of genes directly under the control of one of these master regulators, WhiA. Our results implicate WhiA in the direct regulation of key steps in sporulation, including the cessation of aerial growth, the initiation of cell division, and chromosome segregation.


2020 ◽  
Author(s):  
Aleksandra Kożyczkowska ◽  
Sebastián R. Najle ◽  
Eduard Ocaña-Pallarès ◽  
Cristina Aresté ◽  
Iñaki Ruiz-Trillo ◽  
...  

ABSTRACTThe evolutionary path from protists to multicellular animals remains a mystery. Recent work on the genomes of several unicellular relatives of animals has shaped our understanding of the genetic changes that may have occurred in this transition. However, the specific cellular modifications that took place to accommodate these changes remain unclear. Functional approaches are now needed to unravel how different cell biological features evolved. Recent work has already established genetic tools in three of the four unicellular lineages closely related to animals (choanoflagellates, filastereans, and ichthyosporeans). However, there are no genetic tools available for Corallochytrea, the lineage that seems to have the widest mix of fungal and metazoan features, as well as a complex life cycle. Here, we describe the development of stable transfection in the corallochytrean Corallochytrium limacisporum. Using a battery of cassettes to tag key cellular components, such as nucleus, plasma membrane, cytoplasm and actin filaments, we employ live imaging to discern previously unknown biological features of C. limacisporum. In particular, we identify two different paths for cell division—binary fission and coenocytic growth—that reveal a non-linear life cycle in C. limacisporum. Additionally, we found that C. limacisporum is binucleate for most of its life cycle, and that, contrary to what happens in most eukaryotes, nuclear division is decoupled from cell division. The establishment of these tools in C. limacisporum fills an important gap in the unicellular relatives of animals, opening up new avenues of research with broad taxon sampling to elucidate the specific cellular changes that occurred in the evolution of animals.


2007 ◽  
Vol 189 (6) ◽  
pp. 2310-2318 ◽  
Author(s):  
Lei Wang ◽  
Yanfei Yu ◽  
Xinyi He ◽  
Xiufen Zhou ◽  
Zixin Deng ◽  
...  

ABSTRACT Streptomyces coelicolor A3(2) does not have a canonical cell division cycle during most of its complex life cycle, yet it contains a gene (ftsKSC ) encoding a protein similar to FtsK, which couples the completion of cell division and chromosome segregation in unicellular bacteria such as Escherichia coli. Here, we show that various constructed ftsKSC mutants all grew apparently normally and sporulated but upon restreaking gave rise to many aberrant colonies and to high frequencies of chloramphenicol-sensitive mutants, a phenotype previously associated with large terminal deletions from the linear chromosome. Indeed, most of the aberrant colonies had lost large fragments near one or both chromosomal termini, as if chromosome ends had failed to reach their prespore destination before the closure of sporulation septa. A constructed FtsKSC-enhanced green fluorescent protein fusion protein was particularly abundant in aerial hyphae, forming distinctive complexes before localizing to each sporulation septum, suggesting a role for FtsKSC in chromosome segregation during sporulation. Use of a fluorescent reporter showed that when ftsKSC was deleted, several spore compartments in most spore chains failed to express the late-sporulation-specific sigma factor gene sigF, even though they contained chromosomal DNA. This suggested that sigF expression is autonomously activated in each spore compartment in response to completion of chromosome transfer, which would be a previously unknown checkpoint for late-sporulation-specific gene expression. These results provide new insight into the genetic instability prevalent among streptomycetes, including those used in the industrial production of antibiotics.


2020 ◽  
Vol 14 (2) ◽  
pp. 265-311
Author(s):  
Magdalena Achrem ◽  
Izabela Szućko ◽  
Anna Kalinka

The centromere is a chromosomal region where the kinetochore is formed, which is the attachment point of spindle fibers. Thus, it is responsible for the correct chromosome segregation during cell division. Telomeres protect chromosome ends against enzymatic degradation and fusions, and localize chromosomes in the cell nucleus. For this reason, centromeres and telomeres are parts of each linear chromosome that are necessary for their proper functioning. More and more research results show that the identity and functions of these chromosomal regions are epigenetically determined. Telomeres and centromeres are both usually described as highly condensed heterochromatin regions. However, the epigenetic nature of centromeres and telomeres is unique, as epigenetic modifications characteristic of both eu- and heterochromatin have been found in these areas. This specificity allows for the proper functioning of both regions, thereby affecting chromosome homeostasis. This review focuses on demonstrating the role of epigenetic mechanisms in the functioning of centromeres and telomeres in plants and animals.


Author(s):  
Betty Ruth Jones ◽  
Steve Chi-Tang Pan

INTRODUCTION: Schistosomiasis has been described as “one of the most devastating diseases of mankind, second only to malaria in its deleterious effects on the social and economic development of populations in many warm areas of the world.” The disease is worldwide and is probably spreading faster and becoming more intense than the overall research efforts designed to provide the basis for countering it. Moreover, there are indications that the development of water resources and the demands for increasing cultivation and food in developing countries may prevent adequate control of the disease and thus the number of infections are increasing.Our knowledge of the basic biology of the parasites causing the disease is far from adequate. Such knowledge is essential if we are to develop a rational approach to the effective control of human schistosomiasis. The miracidium is the first infective stage in the complex life cycle of schistosomes. The future of the entire life cycle depends on the capacity and ability of this organism to locate and enter a suitable snail host for further development, Little is known about the nervous system of the miracidium of Schistosoma mansoni and of other trematodes. Studies indicate that miracidia contain a well developed and complex nervous system that may aid the larvae in locating and entering a susceptible snail host (Wilson, 1970; Brooker, 1972; Chernin, 1974; Pan, 1980; Mehlhorn, 1988; and Jones, 1987-1988).


Science ◽  
1992 ◽  
Vol 257 (5070) ◽  
pp. 626-626 ◽  
Author(s):  
C. Gimeno ◽  
G. Fink
Keyword(s):  

2004 ◽  
Vol 55 (2) ◽  
pp. 349-367 ◽  
Author(s):  
Gonçalo Real ◽  
Sabine Autret ◽  
Elizabeth J. Harry ◽  
Jeffery Errington ◽  
Adriano O. Henriques

1968 ◽  
Vol 42 (3-4) ◽  
pp. 295-298 ◽  
Author(s):  
J. M. Hamilton ◽  
A. W. McCaw

Aelurostrongylus abstrusus, the lungworm of the cat, has a world wide distribution and has been reported from countries as far apart as America, Great Britain and Palestine. It has a complex life cycle insofar as a molluscan intermediate host is essential and it is possible that auxiliary hosts also play an important part. In Britain, the incidence of active infestation of cats with the parasite has been recorded as 19·4% (Lewis, 1927) and 6·6% (Hamilton, 1966) but the latter author found that, generally, the clinical disease produced by the parasite was of a mild nature. It is known that the average patent period of the infestation in the cat is 8–13 weeks and it seems likely that, in that time, a considerable number of first stage larvae would be evacuated. Information on that point is not available and the object of the following experiment was to ascertain the number of larvae produced by cats during the course of a typical infestation.


Sign in / Sign up

Export Citation Format

Share Document