scholarly journals Oncogenic KRAS is dependent upon an EFR3A-PI4KA signaling axis for potent tumorigenic activity

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hema Adhikari ◽  
Walaa E. Kattan ◽  
Shivesh Kumar ◽  
Pei Zhou ◽  
John F. Hancock ◽  
...  

AbstractThe HRAS, NRAS, and KRAS genes are collectively mutated in a fifth of all human cancers. These mutations render RAS GTP-bound and active, constitutively binding effector proteins to promote signaling conducive to tumorigenic growth. To further elucidate how RAS oncoproteins signal, we mined RAS interactomes for potential vulnerabilities. Here we identify EFR3A, an adapter protein for the phosphatidylinositol kinase PI4KA, to preferentially bind oncogenic KRAS. Disrupting EFR3A or PI4KA reduces phosphatidylinositol-4-phosphate, phosphatidylserine, and KRAS levels at the plasma membrane, as well as oncogenic signaling and tumorigenesis, phenotypes rescued by tethering PI4KA to the plasma membrane. Finally, we show that a selective PI4KA inhibitor augments the antineoplastic activity of the KRASG12C inhibitor sotorasib, suggesting a clinical path to exploit this pathway. In sum, we have discovered a distinct KRAS signaling axis with actionable therapeutic potential for the treatment of KRAS-mutant cancers.

1986 ◽  
Vol 240 (2) ◽  
pp. 341-348 ◽  
Author(s):  
A Imai ◽  
M J Rebecchi ◽  
M C Gershengorn

Regulation of phosphatidylinositol kinase (EC 2.7.1.67) and phosphatidylinositol 4-phosphate (PtdIns4P) kinase (EC 2.7.1.68) was investigated in highly enriched plasma-membrane and cytosolic fractions derived from cloned rat pituitary (GH3) cells. In plasma membranes, phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] added exogenously enhanced incorporation of [32P]phosphate from [gamma-32P]MgATP2- into PtdIns(4,5)P2 and PtdIns4P to 150% of control; half-maximal effect occurred with 0.03 mM exogenous PtdIns(4,5)P2. Exogenous PtdIns4P and phosphatidylinositol (PtdIns) had no effect. When plasma membranes prepared from cells prelabelled to isotopic steady state with [3H]inositol were used, there was a MgATP2- dependent increase in the content of [3H]PtdIns(4,5)P2 and [3H]PtdIns4P that was enhanced specifically by exogenous PtdIns(4,5)P2 also. Degradation of 32P- and 3H-labelled PtdIns(4,5)P2 and PtdIns4P within the plasma-membrane fraction was not affected by exogenous PtdIns(4,5)P2. Phosphoinositide kinase activities in the cytosolic fraction were assayed by using exogenous substrates. Phosphoinositide kinase activities in cytosol were inhibited by exogenously added PtdIns(4,5)P2. These findings demonstrate that exogenously added PtdIns(4,5)P2 enhances phosphoinositide kinase activities (and formation of polyphosphoinositides) in plasma membranes, but decreases these kinase activities in cytosol derived from GH3 cells. These data suggest that flux of PtdIns to PtdIns4P to PtdIns(4,5)P2 in the plasma membrane cannot be increased simply by release of membrane-associated phosphoinositide kinases from product inhibition as PtdIns(4,5)P2 is hydrolysed.


1984 ◽  
Vol 219 (2) ◽  
pp. 471-480 ◽  
Author(s):  
N E Tooke ◽  
C N Hales ◽  
J C Hutton

Subcellular fractions were isolated from a rat beta-cell tumour by centrifugation of homogenates on Percoll and Urografin density gradients. Fractions were incubated with [gamma-32P]ATP, and labelling of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate was used to measure phosphatidylinositol kinase and phosphatidylinositol 4-phosphate kinase activities, respectively. The distribution of enzyme markers in density gradients indicated that phosphatidylinositol kinase was located in both the plasma membrane and the secretory-granule membrane. Phosphatidylinositol 4-phosphate kinase activity was low in all fractions. Phosphatidylinositol kinase activity of secretory granules and plasma membranes was decreased to 10-20% of its initial value by raising the free [Ca2+] from 1 microM to 5 microM. The enzyme had a Km (apparent) for ATP of 110 microM (secretory granule) or 120 microM (plasma membrane) and a Ka for Mg2+ of 7 mM (secretory granule) or 6 mM (plasma membrane). Ca2+-sensitivity of phosphatidylinositol kinase in calmodulin-depleted secretory granules and plasma membranes was not affected by addition of exogenous calmodulin, although activity was stimulated by trifluoperazine in the presence of 0.1 microM or 40 microM-Ca2+. Trifluoperazine oxide had no effect on the enzyme activity of secretory granules. Plasma membranes had a phosphatidylinositol 4-phosphate phosphatase activity which was stimulated by raising the free [Ca2+] from 0.1 to 40 microM. The secretory granule showed no phosphatidylinositol 4-phosphate-degrading activity. These results suggest the presence in the tumour beta-cell of Ca2+-sensitive mechanisms responsible for the metabolism of polyphosphoinositides in the secretory granule and plasma membrane.


2020 ◽  
Vol 26 ◽  
Author(s):  
Yuying Qi ◽  
Chaoying Song ◽  
Jiali Zhang ◽  
Chong Guo ◽  
Chengfu Yuan

Background: Long non-coding RNA (LncRNAs), with the length over 200 nucleotides, originate from intergenic, antisense, or promoter-proximal regions, is a large family of RNAs that lack coding capacity. Emerging evidences illustrated that LncRNAs played significant roles in a variety of cellular functions and biological processes in profuse human diseases, especially in cancers. Cancer susceptibility candidate 9 (CASC9), as a member of the LncRNAs group, was firstly found its oncogenic function in esophageal cancer. In following recent studies, a growing amount of human malignancies are verified to be correlated with CASC9, most of which are derived from the squamous epithelium tissue. This present review attempts to highlight the latest insights into the expression, functional roles, and molecular mechanisms of CASC9 in different human malignancies. Methods: In this review, the latest findings related to the pathophysiological processes of CASC9 in human cancers were summarized and analyzed, the associated studies were collected in systematically retrieval of PubMed used lncRNA and CASA9 as keywords. Results: CASC9 expression is identified to be aberrantly elevated in a variety of malignancies. The over-expression of CASC9 has been suggested to accelerate cell proliferation, migration, cell growth and drug resistance of cancer cells, while depress cell apoptosis, revealing its role as an oncogene. Moreover, the current review demonstrated CASC9 closely relates to neoplastic transformation of squamous epithelial cells and squamous metaplasia in non-squamous epithelial tissues. Finally, we discuss the limitations and tremendous diagnostic/therapeutic potential of CASC9 in various human cancers. Results: CASC9 expression is identified to be aberrantly elevated in a variety of malignancies. The over-expression of CASC9 has been suggested to accelerate cell proliferation, migration, cell growth and drug resistance of cancer cells, while depress cell apoptosis, revealing its role as an oncogene. Moreover, the current review demonstrated CASC9 closely relates to neoplastic transformation of squamous epithelial cells and squamous metaplasia in non-squamous epithelial tissues. Finally, we discuss the limitations and tremendous diagnostic/therapeutic potential of CASC9 in various human cancers. Conclusion: Long non-coding RNACASC9 likely served as useful disease biomarkers or therapy targets that could effectively apply in treatment of different kinds of cancers.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhiyong Wang ◽  
Yusuke Goto ◽  
Michael M. Allevato ◽  
Victoria H. Wu ◽  
Robert Saddawi-Konefka ◽  
...  

AbstractImmune checkpoint blockade (ICB) therapy has revolutionized head and neck squamous cell carcinoma (HNSCC) treatment, but <20% of patients achieve durable responses. Persistent activation of the PI3K/AKT/mTOR signaling circuitry represents a key oncogenic driver in HNSCC; however, the potential immunosuppressive effects of PI3K/AKT/mTOR inhibitors may limit the benefit of their combination with ICB. Here we employ an unbiased kinome-wide siRNA screen to reveal that HER3, is essential for the proliferation of most HNSCC cells that do not harbor PIK3CA mutations. Indeed, we find that persistent tyrosine phosphorylation of HER3 and PI3K recruitment underlies aberrant PI3K/AKT/mTOR signaling in PIK3CA wild type HNSCCs. Remarkably, antibody-mediated HER3 blockade exerts a potent anti-tumor effect by suppressing HER3-PI3K-AKT-mTOR oncogenic signaling and concomitantly reversing the immune suppressive tumor microenvironment. Ultimately, we show that HER3 inhibition and PD-1 blockade may provide a multimodal precision immunotherapeutic approach for PIK3CA wild type HNSCC, aimed at achieving durable cancer remission.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 700
Author(s):  
Mario Cioce ◽  
Vito Michele Fazio

The Eph receptors represent the largest group among Receptor Tyrosine kinase (RTK) families. The Eph/ephrin signaling axis plays center stage during development, and the deep perturbation of signaling consequent to its dysregulation in cancer reveals the multiplicity and complexity underlying its function. In the last decades, they have emerged as key players in solid tumors, including colorectal cancer (CRC); however, what causes EphA2 to switch between tumor-suppressive and tumor-promoting function is still an active theater of investigation. This review summarizes the recent advances in understanding EphA2 function in cancer, with detail on the molecular determinants of the oncogene-tumor suppressor switch function of EphA2. We describe tumor context-specific examples of EphA2 signaling and the emerging role EphA2 plays in supporting cancer—stem—cell-like populations and overcoming therapy-induced stress. In such a frame, we detail the interaction of the EphA2 and EGFR pathway in solid tumors, including colorectal cancer. We discuss the contribution of the EphA2 oncogenic signaling to the resistance to EGFR blocking agents, including cetuximab and TKIs.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Catarina Dias ◽  
Jesper Nylandsted

AbstractMaintenance of plasma membrane integrity is essential for normal cell viability and function. Thus, robust membrane repair mechanisms have evolved to counteract the eminent threat of a torn plasma membrane. Different repair mechanisms and the bio-physical parameters required for efficient repair are now emerging from different research groups. However, less is known about when these mechanisms come into play. This review focuses on the existence of membrane disruptions and repair mechanisms in both physiological and pathological conditions, and across multiple cell types, albeit to different degrees. Fundamentally, irrespective of the source of membrane disruption, aberrant calcium influx is the common stimulus that activates the membrane repair response. Inadequate repair responses can tip the balance between physiology and pathology, highlighting the significance of plasma membrane integrity. For example, an over-activated repair response can promote cancer invasion, while the inability to efficiently repair membrane can drive neurodegeneration and muscular dystrophies. The interdisciplinary view explored here emphasises the widespread potential of targeting plasma membrane repair mechanisms for therapeutic purposes.


2018 ◽  
Vol 11 (557) ◽  
pp. eaap9752 ◽  
Author(s):  
Kristina B. Emdal ◽  
Anna-Kathrine Pedersen ◽  
Dorte B. Bekker-Jensen ◽  
Alicia Lundby ◽  
Shana Claeys ◽  
...  

Oncogenic anaplastic lymphoma kinase (ALK) is one of the few druggable targets in neuroblastoma, and therapy resistance to ALK-targeting tyrosine kinase inhibitors (TKIs) comprises an inevitable clinical challenge. Therefore, a better understanding of the oncogenic signaling network rewiring driven by ALK is necessary to improve and guide future therapies. Here, we performed quantitative mass spectrometry–based proteomics on neuroblastoma cells treated with one of three clinically relevant ALK TKIs (crizotinib, LDK378, or lorlatinib) or an experimentally used ALK TKI (TAE684) to unravel aberrant ALK signaling pathways. Our integrated proximal proteomics (IPP) strategy included multiple signaling layers, such as the ALK interactome, phosphotyrosine interactome, phosphoproteome, and proteome. We identified the signaling adaptor protein IRS2 (insulin receptor substrate 2) as a major ALK target and an ALK TKI–sensitive signaling node in neuroblastoma cells driven by oncogenic ALK. TKI treatment decreased the recruitment of IRS2 to ALK and reduced the tyrosine phosphorylation of IRS2. Furthermore, siRNA-mediated depletion of ALK or IRS2 decreased the phosphorylation of the survival-promoting kinase Akt and of a downstream target, the transcription factor FoxO3, and reduced the viability of three ALK-driven neuroblastoma cell lines. Collectively, our IPP analysis provides insight into the proximal architecture of oncogenic ALK signaling by revealing IRS2 as an adaptor protein that links ALK to neuroblastoma cell survival through the Akt-FoxO3 signaling axis.


Sign in / Sign up

Export Citation Format

Share Document