scholarly journals A GATA4-regulated secretory program suppresses tumors through recruitment of cytotoxic CD8 T cells

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Rupesh S. Patel ◽  
Rodrigo Romero ◽  
Emma V. Watson ◽  
Anthony C. Liang ◽  
Megan Burger ◽  
...  

AbstractThe GATA4 transcription factor acts as a master regulator of development of multiple tissues. GATA4 also acts in a distinct capacity to control a stress-inducible pro-inflammatory secretory program that is associated with senescence, a potent tumor suppression mechanism, but also operates in non-senescent contexts such as tumorigenesis. This secretory pathway is composed of chemokines, cytokines, growth factors, and proteases. Since GATA4 is deleted or epigenetically silenced in cancer, here we examine the role of GATA4 in tumorigenesis in mouse models through both loss-of-function and overexpression experiments. We find that GATA4 promotes non-cell autonomous tumor suppression in multiple model systems. Mechanistically, we show that Gata4-dependent tumor suppression requires cytotoxic CD8 T cells and partially requires the secreted chemokine CCL2. Analysis of transcriptome data in human tumors reveals reduced lymphocyte infiltration in GATA4-deficient tumors, consistent with our murine data. Notably, activation of the GATA4-dependent secretory program combined with an anti-PD-1 antibody robustly abrogates tumor growth in vivo.

1995 ◽  
Vol 182 (5) ◽  
pp. 1415-1421 ◽  
Author(s):  
T C Wu ◽  
A Y Huang ◽  
E M Jaffee ◽  
H I Levitsky ◽  
D M Pardoll

Introduction of the B7-1 gene into murine tumor cells can result in rejection of the B7-1 transductants and, in some cases, systemic immunity to subsequent challenge with the nontransduced tumor cells. These effects have been largely attributed to the function of B7-1 as a costimulator in directly activating tumor specific, major histocompatibility class I-restricted CD8+ T cells. We examined the role of B7-1 expression in the direct rejection as well as in the induction of systemic immunity to a nonimmunogenic murine tumor. B-16 melanoma cells with high levels of B7-1 expression did not grow in C57BL/6 recipient mice, while wild-type B-16 cells and cells with low B7-1 expression grew progressively within 21 d. In mixing experiments with B7-1hi and wild-type B-16 cells, tumors grew out in vivo even when a minority of cells were B7-1-. Furthermore, the occasional tumors that grew out after injection of 100% B-16 B7-1hi cells showed markedly decreased B7-1 expression. In vivo antibody depletions showed that NK1.1 and CD8+ T cells, but not CD4+ T cells, were essential for the in vivo rejection of tumors. Animals that rejected B-16 B7-1hi tumors did not develop enhanced systemic immunity against challenge with wild-type B-16 cells. These results suggest that a major role of B7-1 expression by tumors is to mediate direct recognition and killing by natural killer cells. With an intrinsically nonimmunogenic tumor, this direct killing does not lead to enhanced systemic immunity.


Author(s):  
Mohammad H. Rashid ◽  
Thaiz F. Borin ◽  
Roxan Ara ◽  
Raziye Piranlioglu ◽  
Bhagelu R. Achyut ◽  
...  

AbstractMyeloid-derived suppressor cells (MDSCs) are an indispensable component of the tumor microenvironment (TME), and our perception regarding the role of MDSCs in tumor promotion is attaining extra layer of intricacy in every study. In conjunction with MDSC’s immunosuppressive and anti-tumor immunity, they candidly facilitate tumor growth, differentiation, and metastasis in several ways that yet to be explored. Alike any other cell types, MDSCs also release a tremendous amount of exosomes or nanovesicles of endosomal origin and partake in intercellular communications by dispatching biological macromolecules. There has not been any experimental study done to characterize the role of MDSCs derived exosomes (MDSC exo) in the modulation of TME. In this study, we isolated MDSC exo and demonstrated that they carry a significant amount of proteins that play an indispensable role in tumor growth, invasion, angiogenesis, and immunomodulation. We observed higher yield and more substantial immunosuppressive potential of exosomes isolated from MDSCs in the primary tumor area than those are in the spleen or bone marrow. Our in vitro data suggest that MDSC exo are capable of hyper activating or exhausting CD8 T-cells and induce reactive oxygen species production that elicits activation-induced cell death. We confirmed the depletion of CD8 T-cells in vivo by treating the mice with MDSC exo. We also observed a reduction in pro-inflammatory M1-macrophages in the spleen of those animals. Our results indicate that immunosuppressive and tumor-promoting functions of MDSC are also implemented by MDSC-derived exosomes which would open up a new avenue of MDSC research and MDSC-targeted therapy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2974-2974
Author(s):  
Xiaofan Li ◽  
Wei He ◽  
Ruishu Deng ◽  
Can Liu ◽  
Miao Wang ◽  
...  

Abstract Abstract 2974 Alloreactive donor CD8+ T cells facilitate engraftment and mediate graft versus leukemia (GVL) effects but also cause graft versus host disease (GVHD) in murine and human recipients after allogeneic hematopoietic cell transplantation (HCT). B7-H1 (PD-L1) expression by antigen-presenting cells has an important role in tolerizing activated T cells by binding to PD-1. We and others previously reported that disruption of binding between B7-H1 and PD-1 augments acute GVHD. Parenchymal cells do not usually express B7-H1 but can be induced by inflammatory cytokines (i.e. IFN-g) to express B7-H1. The role of B7-H1 expression by parenchymal tissue cells in regulating the expansion and persistence of donor CD8+ cells in tissues of mice with GVHD has not yet been evaluated. In the current studies, we evaluated the role of B7-H1 expression by GVHD target tissues in regulating donor CD8+ T cell function in 3 different experimental GVHD systems, using in vivo bioluminescent imaging (BLI), in vivo BrdU-labeling, and in vitro proliferation assays. The first system evaluated the role of B7-H1 expression in TBI-conditioned recipients. In these recipients, injected donor CD8+ T cells showed two waves of expansion that correlated with two phases of clinical GVHD. The first wave of donor CD8+ T cell expansion was associated with upregulated expression of B7-H1 in GVHD target tissues and only weak clinical GVHD. The second wave of donor CD8+ T cell expansion was associated with loss of B7-H1 expression, vigorous donor CD8+ T proliferation and expansion in the GVHD target tissues, and lethal GVHD. In a gain-of-function experiment, B7-H1 expression was induced in hepatocytes by hydrodynamic injection of B7-H1 cDNA during the second wave of T cell expansion in mice with GVHD; this subsequently decreased T cell expansion in the liver and ameliorated GVHD. The second system evaluated the role of B7-H1 expression in anti-CD3-conditioned recipients. In wild-type recipients, injected donor CD8+ T cells had only a single wave of expansion, and the mice had no signs of GVHD. B7-H1 expression by tissue cells (i.e. hepatocytes) was up-regulated, and the tissue infiltrating donor CD8+ T cells were anergic. In B7-H1−/− recipients, injected donor CD8+ T cells proliferated vigorously in GVHD target tissues and caused lethal GVHD.The third system evaluated the role of B7-H1 in unconditioned Rag-2−/− recipients after administration of blocking anti-B7-H1 and in the B7-H1−/−Rag-2−/− chimeras with B7-H1 sufficient Rag-2−/− bone marrow cells, in which B7-H1 deficiency was only in tissue parenchymal cells. Both blockade of B7-H1 and B7-H1 deficiency in parenchymal cells resulted in vigorous donor CD8+ T proliferation in GVHD target tissues and caused lethal GVHD. Taken together, these results show that expression of B7-H1 in GVHD target tissue parenchymal cells plays an important role in regulating the proliferation of infiltrating donor CD8+ T cells and preventing the persistence of GVHD. Our studies also indicate that TBI but not anti-CD3 conditioning can lead to loss of GVHD target tissue cell expression of B7-H1 and persistence of GVHD. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 394-394
Author(s):  
Lurong Lian ◽  
Yanfeng Wang ◽  
Xinsheng Chen ◽  
Tami Bach ◽  
Laurie Lenox ◽  
...  

Abstract Pleckstrin is a 40 kDa phosphoprotein containing amino- and carboxyl-terminal Pleckstrin Homology (PH) domains separated by a DEP domain. Pleckstrin’s expression is restricted to platelets and leukocytes, and represents approximately 1% of total cellular protein within these cells. Following platelet and leukocyte activation, PKC rapidly phosphorylates pleckstrin inducing it to bind membrane bound phospholipids such as phosphatidylinositol 4,5 bisphosphate (PIP2). Heterologously expressed phosphorylated pleckstrin colocalized with integrins and induces cytoskeletal reorganization. To better define the role of pleckstrin in vivo, we introduced a loss-of-function mutation into the murine pleckstrin gene. Pleckstrin-null mice were present in offspring at a frequency consistent with a Mendelian inheritance pattern. Adult pleckstrin −/− mice had 32% lower platelet counts than their littermates, but exhibited no spontaneous hemorrhage. Given the role of PKC and phospholipid second messengers on cytoskeletal dynamics, and our observations of pleckstrin overexpression in cell lines, we analyzed whether loss of pleckstrin affected cell spreading. Pleckstrin −/− platelets spread extremely poorly upon immobilized fibrinogen, and rarely exhibited broad membrane extensions. Granulocytes from pleckstrin −/− mice also have a spreading defect, as well as impaired ability to generate reactive oxygen species in the response to TNFα. Knockout B-cells, CD4-T-cells, and CD8-T-cells all migrated approximately 30% as efficiently as wild type cells in response to a gradient of SDF-1α in a transwell assay. These data suggest that loss of pleckstrin causes cytoskeletal defects in cells of multiple hematopoietic lineages. Analyzing whether this caused a functional defect, we found that pleckstrin −/− platelets exhibited a 22% dense- and 24% alpha-granule exocytosis defect, and a 35% defect in thrombin-induced calcium entry. In spite of these abnormalities, platelets changed shape and aggregated normally after stimulation with thrombin, ADP, or collagen in vitro. Pleckstrin knockout platelets did have a markedly impaired aggregation response following exposure to the PKC stimulant, PMA. This suggested that pleckstrin is a critical effector for PKC-mediated aggregation, but another pathway is able to compensate for this loss of pleckstrin following agonist stimulation. We reasoned that the alternative pathway might also utilize PIP2-dependent second messengers. Since the phosphorylation of PIP2 by PI3K generates second messengers that also contribute to platelet aggregation, we tested whether PI3K compensated for the loss of pleckstrin. We found that the PI3K inhibitor, LY294002 profoundly impaired the aggregation of pleckstrin knockout platelets in response to stimulation of the thrombin receptor. In contrast, the PI3K inhibitor minimally affected wild type platelets. This demonstrates that second messengers generated by PI3K are able to compensate for loss of pleckstrin. This also demonstrates that thrombin-induced platelet aggregation can be mediated by one of two parallel pathways, one involving PKC and pleckstrin, and the other involving PI3K. Together, our results show that pleckstrin is an essential component of PKC-mediated platelet activation and signals directed to the cytoskeleton.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 845-845
Author(s):  
Yongxia Wu ◽  
David Bastian ◽  
Jessica Lauren Heinrichs ◽  
Jianing Fu ◽  
Hung Nguyen ◽  
...  

Abstract Graft-versus-host disease (GVHD) remains a life threatening complication after allogeneic hematopoietic stem cell transplantation (HCT). Donor T cells are the key pathogenic effectors in the induction of GVHD. MicroRNAs (miRs) have been shown to play an important role in orchestrating immune response, among which miR-17-92 cluster is one of the best characterized miR clusters that encodes 6 miRs including 17, 18a, 19a, 20a, 19b-1 and 92-1. Although regulatory functions of miR-17-92 cluster have been elaborated in a variety of immune responses including anti-infection, anti-tumor, and autoimmunity, the role of this miR cluster in the modulation of T-cell response to alloantigens and the development of GVHD has not been explored previously. Based on the previous report that miR-17-92 promotes Th1 responses and inhibits induced regulatory T-cell (iTreg) differentiation in vitro, we hypothesized that blockade of miR-17-92 would constrain T-cell alloresponse and attenuate GVHD. To evaluate the function of miR-17-92 on T-cell alloresponse, we utilized the mice with miR-17-92 conditional knock-out (KO) on T cells as donors, and compared the alloresponse of WT and KO T cells after allogeneic bone marrow transplantation (allo-BMT). We observed that KO T cells had substantially reduced ability to proliferate and produce IFNγ as compared to WT counterparts 4 days after cell transfer. Interestingly, CD4 but not CD8 KO T cells had increased cell death in the population of fast-dividing T cells. Thus, miR-17-92 cluster promotes activation and expansion of both CD4 and CD8 T cells, and inhibits activation-induced cell death of CD4 but not CD8 T cells at the early stage of alloresponse in vivo. We further evaluated the role of miR-17-92 on T cells in the development of acute GVHD in a fully MHC-mismatched BMT model. In sharp contrast to WT T cells that caused severe GVHD and resulted in 100% mortality of the recipients, KO T cells were impaired in causing severe GVHD reflected by mild clinical manifestations and no mortality. These observations were extended to MHC-matched but minor antigen-mismatched as well as haploidentical BMT models that are more clinically relevant. We next addressed the critical question whether T cells deficient for miR-17-92 are still capable of mediating graft-versus-leukemia (GVL) effect. Using A20 lymphoma and P815 mastocytoma cell lines, we demonstrated that the KO T cells essentially retained the GVL activity in MHC-mismatched and haploidentical BMT model, respectively. Mechanistic studies revealed that miR-17-92 promoted CD4 T-cell proliferation, survival, migration to target organs, and Th1-differentiation, but reduced Th2-differentiation and iTreg generation. However, miR-17-92 had less impact on CD8 T-cell proliferation, survival, IFNγ production, and cytolytic activity reflected by granzyme B and CD107a expression. Moreover, miR-17-92 negatively regulated TNFα production by both CD4 and CD8 T cells. We therefore conclude that miR-17-92 cluster is required for T cells to induce severe GVHD, but it is dispensable for T cells to mediate the GVL effect. To increase translational potential of our findings, we designed the locked nucleic acid (LNA) antagomirs specific for miR-17 or miR-19, which have been reported to be the key members in this cluster. We observed that the treatment with anti-miR-17 significantly inhibited T-cell expansion and IFNγ production in response to alloantigen in vivo, and anti-miR-19 was more effective. Furthermore, our ongoing experiment showed the treatment with anti-miR-17 or anti-miR-19 was able to considerably attenuate the severity of GVHD as compared to scrambled antagomir in a MHC-mismatched BMT model. Taken together, the current work reveals that miR-17-92 cluster is essential for T-cell alloresponse and GVHD development, and validates miR-17-92 cluster as promising therapeutic target for the control of GVHD while preserving GVL activity in allogeneic HCT. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (1) ◽  
pp. 186-192 ◽  
Author(s):  
Monica V. Goldberg ◽  
Charles H. Maris ◽  
Edward L. Hipkiss ◽  
Andrew S. Flies ◽  
Lijie Zhen ◽  
...  

Expression of the PD-1 receptor on T cells has been shown to provide an important inhibitory signal that down-modulates peripheral effector responses in normal tissues and tumors. Furthermore, PD-1 up-regulation on chronically activated T cells can maintain them in a partially reversible inactive state. The function of PD-1 in the very early stages of T-cell response to antigen in vivo has not been fully explored. In this study, we evaluate the role of PD-1 and its 2 B7 family ligands, B7-H1 (PD-L1) and B7-DC (PD-L2), in early fate decisions of CD8 T cells. We show that CD8 T cells specific for influenza hemagglutinin (HA) expressed as a self-antigen become functionally tolerized and express high levels of surface PD-1 by the time of their first cell division. Blockade of PD-1 or B7-H1, but not B7-DC, at the time of self-antigen encounter mitigates tolerance induction and results in CD8 T-cell differentiation into functional cytolytic T lymphocytes (CTLs). These findings demonstrate that, in addition to modulating effector functions in the periphery, B7-H1:PD-1 interactions regulate early T-cell–fate decisions.


1993 ◽  
Vol 23 (8) ◽  
pp. 1757-1761 ◽  
Author(s):  
Egbert Flory ◽  
Michael Pfleiderer ◽  
Albert Stühler And ◽  
Helmut Wege

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4728-4728
Author(s):  
Eva Sahakian ◽  
John Powers ◽  
Pedro Horna ◽  
Jennifer Rock-Klotz ◽  
Susan Deng ◽  
...  

Abstract Abstract 4728 HDAC11 is the newest member of the HDAC family. The physiological role of this HDAC was mainly unknown until the discovery by our group that HDAC11 regulates IL-10 gene expression in immune cells in-vitro1. To better elucidate the role of HDAC11 in lineage differentiation and hematopoiesis, we have utilized an HDAC11 promoter-driven eGFP reporter transgenic mice (TgHDAC11-eGFP) which allow us to “visualize” dynamic changes in HDAC11 gene expression/transcriptional activity in immune cell compartments in vivo. Thus far, our data indicates that in hematopoietic stem cells (CD34+/Lin−), transcriptional activation of HDAC11, indicated by eGFP expression appears to be absent. Also, no eGFP expression is seen in the common lymphoid progenitors (CLP-CD34+/CD127+/CD117low/Lin−) and/or the common myeloid progenitors (CMP-CD34+/CD127−/CD117high/Lin−). In the T-cell compartment, transcriptional activation of HDAC11 increases from CD4−/CD8− T-cells to CD4+/CD8+ T-cells to single positive CD4+ and CD8+ T-cells. The expression of eGFP then decreases from naive to effector memory, but then increases again at terminal effector memory. Expression of eGFP, in the bone marrow moderately increase transitioning from Pro-B-cells (CD3−/CD200+/CD19low/CD43high), Pre-B-cells (CD3−/CD200+/CD19int/CD43int), and Immature (CD3−/CD200+/CD19high/CD43low) respectively. Interestingly eGFP expression doubles in the B-1 (CD3−/CD19+/CD200low/−) stage of differentiation in the periphery. Remarkably, eGFP expression appears to be at its highest in the plasma cell compartment of the bone marrow. A second murine model also available to us, HDAC11 knockout mice (HDAC11KO) were also utilize to confirm these findings. When compared to wild-type mice, HDAC11KO mice have increased B-1 B-cells and decreased plasma cells. In the myeloid compartment, using TgHDAC11-eGFP mice, expression of HDAC11 transcript in myeloblasts (CD34+/CD45dim/CD117+/Lin-) appears to be absent. However the expression increases to 50% in the promyelocytes (Side Scatter high/CD45dim/+/CD34−/CD117+) and to 98% in the granulocytes specifically Neutrophils (Side scatter high/CD45dim+/CD34−/CD117−/CD14−/Ly6Gbright+). Strikingly, monocytes (dendritic cells and macrophages) showed no expression of eGFP. Taken together, HDAC11 appears to be essential for proper B-cells and T-cell differentiation. It also seems to play a critical role in differentiation of granulocytes and monocytes. Therefore it is plausible that HDAC11 might function as a regulator of hematopoietic differentiation and expansion in vivo. A better understanding of this previously unknown role of HDAC11 in hematopoiesis might lead to targeted epigenetic therapies in hematological malignancies to influence the appropriate differentiation of these cells, and possibly augmenting the efficacy of immunotherapeutic approaches against malignancies. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 6 ◽  
Author(s):  
Jing Huang ◽  
Tiffany Tsao ◽  
Min Zhang ◽  
Urvashi Rai ◽  
Moriya Tsuji ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jialin Zhu ◽  
Yan Wang ◽  
Dai Li ◽  
Haonan Zhang ◽  
Zhi Guo ◽  
...  

Abstract Background Interleukin-35 (IL-35) has been reported to play an important role in the progression of cancers. The role of IL-35 in prostate cancer (PCA) is not well understood. In this study, we investigated the effects of IL-35 on PCA and its immunoregulatory effect on PCA. Methods The protein and mRNA expression of IL-35 in PCA cells was detected by western blot and RT-PCR. The invasion and migration of cells were detected using transwell and wound‐healing assays. A CCK-8 assay was conducted to observe cell proliferation. In vivo, IL-35 plasma concentration was test by enzyme-linked immunosorbent assay. The role of IL-35 in tumour cell proliferation and angiogenesis of mice was detected by immunohistochemical stains. The mouse survival and tumour volumes were calculated, and lung metastasis rate was detected by HE staining. The modulatory effects of IL-35 on myeloid-derived inhibitory cells (MDSCs), regulatory T cells (Tregs), CD4+ T cells and CD8+ T cells from PCA mice were investigated by immunohistochemical stains and flow cytometry. Results High levels of IL-35 significantly promoted the migration, invasion and cell proliferation of PCA cells in vitro. IL-35 was associated with tumour growth, metastasis and poor prognosis in PCA mice. Additionally, high levels of IL-35 significantly increased the proportions of MDSCs and Tregs and decreased the proportions of CD4+ and CD8+ T cells in the spleen, blood and tumour microenvironment. The IL-35 neutralizing antibody played the opposite role. Conclusions IL-35 contributed to the progression of PCA through promoting cell proliferation and tumour angiogenesis. IL-35 might limit the anti-tumour immune response by upregulating the proportions of Tregs and MDSCs and by reducing the proportions of CD4+ and CD8+ T cells. IL-35 might serve as a novel therapeutic target for PCA.


Sign in / Sign up

Export Citation Format

Share Document