Novel Role of Histone Deacetylase 11 (HDAC11) in Hematopoiesis

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4728-4728
Author(s):  
Eva Sahakian ◽  
John Powers ◽  
Pedro Horna ◽  
Jennifer Rock-Klotz ◽  
Susan Deng ◽  
...  

Abstract Abstract 4728 HDAC11 is the newest member of the HDAC family. The physiological role of this HDAC was mainly unknown until the discovery by our group that HDAC11 regulates IL-10 gene expression in immune cells in-vitro1. To better elucidate the role of HDAC11 in lineage differentiation and hematopoiesis, we have utilized an HDAC11 promoter-driven eGFP reporter transgenic mice (TgHDAC11-eGFP) which allow us to “visualize” dynamic changes in HDAC11 gene expression/transcriptional activity in immune cell compartments in vivo. Thus far, our data indicates that in hematopoietic stem cells (CD34+/Lin−), transcriptional activation of HDAC11, indicated by eGFP expression appears to be absent. Also, no eGFP expression is seen in the common lymphoid progenitors (CLP-CD34+/CD127+/CD117low/Lin−) and/or the common myeloid progenitors (CMP-CD34+/CD127−/CD117high/Lin−). In the T-cell compartment, transcriptional activation of HDAC11 increases from CD4−/CD8− T-cells to CD4+/CD8+ T-cells to single positive CD4+ and CD8+ T-cells. The expression of eGFP then decreases from naive to effector memory, but then increases again at terminal effector memory. Expression of eGFP, in the bone marrow moderately increase transitioning from Pro-B-cells (CD3−/CD200+/CD19low/CD43high), Pre-B-cells (CD3−/CD200+/CD19int/CD43int), and Immature (CD3−/CD200+/CD19high/CD43low) respectively. Interestingly eGFP expression doubles in the B-1 (CD3−/CD19+/CD200low/−) stage of differentiation in the periphery. Remarkably, eGFP expression appears to be at its highest in the plasma cell compartment of the bone marrow. A second murine model also available to us, HDAC11 knockout mice (HDAC11KO) were also utilize to confirm these findings. When compared to wild-type mice, HDAC11KO mice have increased B-1 B-cells and decreased plasma cells. In the myeloid compartment, using TgHDAC11-eGFP mice, expression of HDAC11 transcript in myeloblasts (CD34+/CD45dim/CD117+/Lin-) appears to be absent. However the expression increases to 50% in the promyelocytes (Side Scatter high/CD45dim/+/CD34−/CD117+) and to 98% in the granulocytes specifically Neutrophils (Side scatter high/CD45dim+/CD34−/CD117−/CD14−/Ly6Gbright+). Strikingly, monocytes (dendritic cells and macrophages) showed no expression of eGFP. Taken together, HDAC11 appears to be essential for proper B-cells and T-cell differentiation. It also seems to play a critical role in differentiation of granulocytes and monocytes. Therefore it is plausible that HDAC11 might function as a regulator of hematopoietic differentiation and expansion in vivo. A better understanding of this previously unknown role of HDAC11 in hematopoiesis might lead to targeted epigenetic therapies in hematological malignancies to influence the appropriate differentiation of these cells, and possibly augmenting the efficacy of immunotherapeutic approaches against malignancies. Disclosures: No relevant conflicts of interest to declare.

2021 ◽  
Author(s):  
Silvia Tiberti ◽  
Carlotta Catozzi ◽  
Caterina Scirgolea ◽  
Ottavio Croci ◽  
Mattia Ballerini ◽  
...  

Tumor contexture has emerged as a major determinant to establish prognosis and guide novel therapies and tumor infiltrating CD8+ T cells have been associated with a better prognosis in several solid tumors, including early-stage colorectal cancer (CRC). However, the tumor immune infiltrate is highly heterogeneous and understanding how the interplay between different immune cell compartments impacts on the clinical outcome is still in its infancy. Here, we describe in a prospective cohort a novel CD8+ T effector memory population, which is characterized by high levels of Granzyme K (GZMKhigh CD8+ TEM) and correlated with CD15high tumor infiltrating neutrophils. We provide both in vitro and in vivo evidence of the role of stromal cell-derived factor 1 (CXCL12/SDF-1) in driving functional changes on neutrophils at the tumor site, promoting their retention and increasing crosstalk with CD8+ T cells. Mechanistically, as a consequence of the interaction with neutrophils, CD8+ T cells are skewed towards a CD8+ TEM phenotype, producing high levels of GZMK, which in turn decreased E-cadherin pathway. The correlation of GZMKhigh CD8+ TEM and neutrophils with both tumor progression in mice and early relapse in CRC patients demonstrate the role of GZMKhigh CD8+ TEM in promoting malignancy. Indeed, a gene signature defining GZMKhigh CD8+ TEM was associated with worse prognosis on a larger independent cohort of CRC patients and a similar analysis was extended to lung cancer (TCGA). Overall, our results highlight the emergence of GZMKhigh CD8+ TEM in early-stage CRC tumors as a hallmark driven by the interaction with neutrophils, which could implement current patient stratification and be targeted by novel therapeutics.


2010 ◽  
Vol 23 (4) ◽  
pp. 194-203 ◽  
Author(s):  
Kiyoshi Setoguchi ◽  
Hidehiro Kishimoto ◽  
Sakiko Kobayashi ◽  
Hiroaki Shimmura ◽  
Hideki Ishida ◽  
...  

1995 ◽  
Vol 182 (5) ◽  
pp. 1415-1421 ◽  
Author(s):  
T C Wu ◽  
A Y Huang ◽  
E M Jaffee ◽  
H I Levitsky ◽  
D M Pardoll

Introduction of the B7-1 gene into murine tumor cells can result in rejection of the B7-1 transductants and, in some cases, systemic immunity to subsequent challenge with the nontransduced tumor cells. These effects have been largely attributed to the function of B7-1 as a costimulator in directly activating tumor specific, major histocompatibility class I-restricted CD8+ T cells. We examined the role of B7-1 expression in the direct rejection as well as in the induction of systemic immunity to a nonimmunogenic murine tumor. B-16 melanoma cells with high levels of B7-1 expression did not grow in C57BL/6 recipient mice, while wild-type B-16 cells and cells with low B7-1 expression grew progressively within 21 d. In mixing experiments with B7-1hi and wild-type B-16 cells, tumors grew out in vivo even when a minority of cells were B7-1-. Furthermore, the occasional tumors that grew out after injection of 100% B-16 B7-1hi cells showed markedly decreased B7-1 expression. In vivo antibody depletions showed that NK1.1 and CD8+ T cells, but not CD4+ T cells, were essential for the in vivo rejection of tumors. Animals that rejected B-16 B7-1hi tumors did not develop enhanced systemic immunity against challenge with wild-type B-16 cells. These results suggest that a major role of B7-1 expression by tumors is to mediate direct recognition and killing by natural killer cells. With an intrinsically nonimmunogenic tumor, this direct killing does not lead to enhanced systemic immunity.


Author(s):  
Mohammad H. Rashid ◽  
Thaiz F. Borin ◽  
Roxan Ara ◽  
Raziye Piranlioglu ◽  
Bhagelu R. Achyut ◽  
...  

AbstractMyeloid-derived suppressor cells (MDSCs) are an indispensable component of the tumor microenvironment (TME), and our perception regarding the role of MDSCs in tumor promotion is attaining extra layer of intricacy in every study. In conjunction with MDSC’s immunosuppressive and anti-tumor immunity, they candidly facilitate tumor growth, differentiation, and metastasis in several ways that yet to be explored. Alike any other cell types, MDSCs also release a tremendous amount of exosomes or nanovesicles of endosomal origin and partake in intercellular communications by dispatching biological macromolecules. There has not been any experimental study done to characterize the role of MDSCs derived exosomes (MDSC exo) in the modulation of TME. In this study, we isolated MDSC exo and demonstrated that they carry a significant amount of proteins that play an indispensable role in tumor growth, invasion, angiogenesis, and immunomodulation. We observed higher yield and more substantial immunosuppressive potential of exosomes isolated from MDSCs in the primary tumor area than those are in the spleen or bone marrow. Our in vitro data suggest that MDSC exo are capable of hyper activating or exhausting CD8 T-cells and induce reactive oxygen species production that elicits activation-induced cell death. We confirmed the depletion of CD8 T-cells in vivo by treating the mice with MDSC exo. We also observed a reduction in pro-inflammatory M1-macrophages in the spleen of those animals. Our results indicate that immunosuppressive and tumor-promoting functions of MDSC are also implemented by MDSC-derived exosomes which would open up a new avenue of MDSC research and MDSC-targeted therapy.


1999 ◽  
Vol 190 (10) ◽  
pp. 1535-1540 ◽  
Author(s):  
Robert S. Mittler ◽  
Tina S. Bailey ◽  
Kerry Klussman ◽  
Mark D. Trailsmith ◽  
Michael K. Hoffmann

The 4-1BB receptor (CDw137), a member of the tumor necrosis factor receptor superfamily, has been shown to costimulate the activation of T cells. Here we show that anti–mouse 4-1BB monoclonal antibodies (mAbs) inhibit thymus-dependent antibody production by B cells. Injection of anti–4-1BB mAbs into mice being immunized with cellular or soluble protein antigens induced long-term anergy of antigen-specific T cells. The immune response to the type II T cell–independent antigen trinintrophenol-conjugated Ficoll, however, was not suppressed. Inhibition of humoral immunity occurred only when anti–4-1BB mAb was given within 1 wk after immunization. Anti–4-1BB inhibition was observed in mice lacking functional CD8+ T cells, indicating that CD8+ T cells were not required for the induction of anergy. Analysis of the requirements for the anti–4-1BB–mediated inhibition of humoral immunity revealed that suppression could not be adoptively transferred with T cells from anti–4-1BB–treated mice. Transfer of BALB/c splenic T cells from sheep red blood cell (SRBC)-immunized and anti–4-1BB–treated mice together with normal BALB/c B cells into C.B-17 severe combined immunodeficient mice failed to generate an anti-SRBC response. However, B cells from the SRBC-immunized, anti–4-1BB–treated BALB/c mice, together with normal naive T cells, exhibited a normal humoral immune response against SRBC after transfer, demonstrating that SRBC-specific B cells were left unaffected by anti–4-1BB mAbs.


Blood ◽  
2015 ◽  
Vol 125 (3) ◽  
pp. 570-580 ◽  
Author(s):  
Anne-Kathrin Hechinger ◽  
Benjamin A. H. Smith ◽  
Ryan Flynn ◽  
Kathrin Hanke ◽  
Cameron McDonald-Hyman ◽  
...  

Key Points Monoclonal antibody blockade of the common γ chain attenuates acute and chronic GVHD. Common γ-chain cytokines increase granzyme B levels in CD8 T cells, which are reduced upon CD132 blockade in vivo.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1373-1373
Author(s):  
JianXiang Zou ◽  
Jeffrey S Painter ◽  
Fanqi Bai ◽  
Lubomir Sokol ◽  
Thomas P. Loughran ◽  
...  

Abstract Abstract 1373 Introduction: LGL leukemia is associated with cytopenias and expansion of clonally-derived mature cytotoxic CD8+ lymphocytes. The etiology of LGL leukemia is currently unknown, however, T cell activation, loss of lymph node homing receptor L-selectin (CD62L), and increased accumulation of T cells in the bone marrow may lead to suppressed blood cell production. The broad resistance to Fas (CD95) apoptotic signals has lead to the hypothesis that amplification of clonal cells occurs through apoptosis resistance. However, the proliferative history has not been carefully studied. To define possible mechanism of LGL leukemia expansion, T cell phenotype, proliferative history, and functional-related surface marker expression were analyzed. Methods: Peripheral blood mononuclear cells (PBMCs) were obtained from 16 LGL leukemia patients that met diagnostic criteria based on the presence of clonal aβ T cells and >300 cells/ml CD3+/CD57+ T cells in the peripheral blood. Samples were obtained from 10 age-matched healthy individuals from the Southwest Florida Blood Services for comparisons. Multi-analyte flow cytometry was conducted for expression of CD3, CD4/8, CD45RA, CD62L, CD27, CD28, CD25, CD127, IL15Ra, IL21a, CCR7 (all antibodies from BD Biosciences). The proliferative index was determined by Ki67 expression in fixed and permeabilized cells (BD Biosciences) and the proliferative history in vivo was assessed by T-cell-receptor excision circle (TREC) measurement using real-time quantitative PCR (qRT-PCR) in sorted CD4+ and CD8+ T cells. TRECs are episomal fragments generated during TCR gene rearrangements that fail to transfer to daughter cells and thus diminish with each population doubling that reflects the in vivo proliferative history. Results: Compared to healthy controls, significantly fewer CD8+ naïve cells (CD45RA+/CD62L+, 8.4 ± 10.8 vs 24.48 ± 11.99, p=0.003) and higher CD8+ terminal effector memory (TEM) T cells (CD45RA+/CD62L-, 67.74 ± 28.75 vs 39.33 ± 11.32, p=0.007) were observed in the peripheral blood. In contrast, the percentage of CD4+ naïve and memory cells (naïve, central memory, effector memory, and terminal effector memory based on CD45RA and CD62L expression) was similar in patients as compared to controls. The expression of CD27 (31.32 ± 34.64 vs 71.73 ± 20.63, p=0.003) and CD28 (31.38 ± 31.91 vs 70.02 ± 22.93, p=0.002) were lower in CD8+ T cell from patients with LGL leukemia and this reduction predominated within the TEM population (17.63±24.5 vs 70.98±22.5 for CD27, p<0.0001 and 13±20.5 vs 69.43± 21.59 for CD28, p<0.0001). Loss of these markers is consistent with prior antigen activation. There was no difference in CD25 (IL2Ra, p=0.2) expression on CD4+ or CD8+ T cells, but CD127 (IL7Ra, p=0.001), IL15Ra, and IL21Ra (p=0.15) were overexpressed in TEM CD8+ T cell in patients vs controls. All of these cytokine receptors belong to the IL2Rβg-common cytokine receptor superfamily that mediates homeostatic proliferation. In CD8+ T cells in patients, the IL-21Ra was also overexpressed in naïve, central and effector memory T cells. The topography of the expanded CD8+ T cell population was therefore consistent with overexpression of activation markers and proliferation-associated cytokine receptors. Therefore, we next analyzed Ki67 expression and TREC DNA copy number to quantify actively dividing cells and determine the proliferative history, respectively. We found that LGL leukemia patients have more actively dividing CD8+ TEM T cells compared to controls (3.2 ± 3.12 in patients vs 0.44 ± 0.44 in controls, p=0.001). Moreover, the TREC copy number in CD8+ T cells was statistically higher in healthy individuals after adjusting for age (177.54 ± 232 in patients vs 1015 ± 951 in controls, p=0.019). These results show that CD8+ cells in the peripheral compartment have undergone more population doublings in vivo compared to healthy donors. In contrast, the TREC copies in CD4+ T-cells were similar between LGL patients and controls (534.4 ± 644 in patients vs 348.78 ± 248.16 in controls, p>0.05) demonstrating selective cellular proliferation within the CD8 compartment. Conclusions: CD8+ T- cells are undergoing robust cellular activation, contraction in repertoire diversity, and enhanced endogenous proliferation in patients with LGL leukemia. Collectively, these results suggest that clonal expansion is at least partially mediated through autoproliferation in T-LGL leukemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 782-782 ◽  
Author(s):  
Marcus Butler ◽  
Philip Friedlander ◽  
Mary Mooney ◽  
Linda Drury ◽  
Martha Metzler ◽  
...  

Abstract Abstract 782 The goal of cellular immunotherapy is to build long-lasting anti-tumor immunologic “memory” in patients and reject tumors for a lifetime. Previously, we and others demonstrated that IL-15 promotes the generation of T cells with a central memory (CM) phenotype which have the capacity to persist and establish effective anti-tumor memory in vivo. Furthermore, it has been shown that CD83 delivers a CD80-dependent T cell stimulatory signal that allows T cells to be long-lived. Based on these findings, we developed a system to generate large numbers of long-lived antigen-specific CD8+ T cells with a memory phenotype. This in vitro culture system utilizes IL-15 and a standardized, renewable artificial antigen presenting cell (aAPC) which was produced by transducing CD80, CD83, and HLA-A*0201 to the human cell line, K562. This aAPC can uniquely support the priming and prolonged expansion of large numbers of antigen-specific CD8+ CTL which display a central/effector memory (CM/EM) phenotype, possess potent effector function, and can be maintained in vitro for >1 year without any feeder cells or cloning. We hypothesized that adoptive transfer of these CTL with a CM/EM phenotype should result in anti-tumor memory in humans even without lymphodepletion or high dose IL-2. For our “first-in-human” clinical study, we chose the melanoma antigen MART1 as a target antigen, since MART1-specific HLA-A*0201+-restricted precursor CTL are detectable in some melanoma patients and can be immunophenotyped pre-infusion. Autologous CD8+ T cells were stimulated weekly with peptide-pulsed human cell-based aAPC and expanded with low dose IL-2 and IL-15. After three weeks, polyclonal MART1 CTL were reinfused without additional lymphodepletion, chemotherapy, IL-2, or vaccination. Eight study participants have enrolled and received a total of 15 MART1 CTL infusions (31% MART1 multimer positivity, median). All but one subject received two reinfusions where the 2nd graft was produced from CD8+ T cells harvested two weeks after the 1st reinfusion. To date, ≥2×109 CTL with potent effector function and a CM/EM phenotype were successfully generated for all subjects. No dose limiting toxicities were observed at either Dose Level 1 (2×108/m2) or Dose Level 2 (2×109/m2). Clinical activity was observed with a response by RECIST criteria in 1 subject, which was confirmed by a negative PET/CT 100 days following the last CTL infusion. In addition, 1 patient experienced a mixed response, 1 had stable disease, 3 had progression, and 2 are currently on active therapy. Multimer staining showed that, immediately post infusion, the percentage of CD8+ T cells specific for MART1 temporarily increased in all subjects, with the highest (6.5%) observed in subject #7. In 4 subjects, sustained increases in the frequency of MART1 specific T cells by more than two-fold (range 2.0-10x) for ≥21 days were observed despite the fact that no exogenous cytokines or vaccination was administered. Moreover, an increase of detectable MART1 specific T cells which display a CM phenotype was observed in all evaluable subjects and was observed for ≥35 days in 6 of 8 subjects. In subject #2, the conversion of MART1 CTL immunophenotype from a naïve to a mixture of naïve/memory phenotypes was observed for more than 6 months. We identified 10 individual MART1 T cell clonotypes from peripheral CD45RA- memory T cells on day 21. Clonotypic TCR Vbeta CDR3 analysis revealed that CTL grafts contained 7 out of 10 of these clonotypes. Furthermore, 6 clonotypes persisted in the peripheral CD45RA- memory fraction on days 39, 67 and/or 132. In Subject #3, who showed a mixed clinical response, 5 individual MART1 T cell clonotypes were isolated from lung metastases. 4 out of 5 clones were included in the CTL grafts. This finding supports the possibility that infused CTL can traffic and localize to sites of disease. Intriguingly, in both subjects, we were able to identify MART1 CTL clonotypes that were not detectable in the CTL grafts but possibly emerged after CTL infusion, indicating that adoptive transfer of MART1-specific CTL may provoke a de novo antitumor response. Taken together, these results suggest that CM/EM MART1 CTL generated ex vivo using our cell-based artificial APC in the presence of IL-15 may persist in vivo and induce de novo anti-tumor responses. Further enhancement of anti-tumor activity may be achieved through vaccination, cytokine administration, and/or removal of cytokine sinks and inhibitory factors following appropriate lymphodepletion. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document