scholarly journals Transglutaminase 3 crosslinks the secreted gel-forming mucus component Mucin-2 and stabilizes the colonic mucus layer

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Jack D. A. Sharpen ◽  
Brendan Dolan ◽  
Elisabeth E. L. Nyström ◽  
George M. H. Birchenough ◽  
Liisa Arike ◽  
...  

AbstractThe colonic mucus layer is organized as a two-layered system providing a physical barrier against pathogens and simultaneously harboring the commensal flora. The factors contributing to the organization of this gel network are not well understood. In this study, the impact of transglutaminase activity on this architecture was analyzed. Here, we show that transglutaminase TGM3 is the major transglutaminase-isoform expressed and synthesized in the colon. Furthermore, intrinsic extracellular transglutaminase activity in the secreted mucus was demonstrated in vitro and ex vivo. Absence of this acyl-transferase activity resulted in faster degradation of the major mucus component the MUC2 mucin and changed the biochemical properties of mucus. Finally, TGM3-deficient mice showed an early increased susceptibility to Dextran Sodium Sulfate-induced colitis. Here, we report that natural isopeptide cross-linking by TGM3 is important for mucus homeostasis and protection of the colon from inflammation, reducing the risk of colitis.

2021 ◽  
Author(s):  
Jack Sharpen ◽  
Brendan Dolan ◽  
Elisabeth Nyström ◽  
George Birchenough ◽  
Liisa Arike ◽  
...  

Abstract The colonic mucus layer is organized as a two-layered system providing a physical barrier against pathogens and simultaneously harboring the commensal flora. The factors contributing to the organization of this gel network are not well understood. In this study, the impact of transglutaminase activity on this architecture was analyzed. Here, we show that transglutaminase TGM3 is the major TGM isoform expressed and synthesized in the colon. Furthermore, intrinsic extracellular TGM activity in the secreted mucus was demonstrated in vitro and ex vivo. Absence of this acyl-transferase activity resulted in faster degradation of the major mucus component the MUC2 mucin and changed the biochemical properties of mucus. Finally, TGM3-deficient mice showed an early increased susceptibility to DSS-induced colitis. Thus, these observations suggest that natural isopeptide cross-linking by TGM3 is important for mucus homeostasis and protection of the colon from inflammation, a suggested pre-stage of colon carcinoma.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Federico Tinarelli ◽  
Elena Ivanova ◽  
Ilaria Colombi ◽  
Erica Barini ◽  
Edoardo Balzani ◽  
...  

Abstract Background DNA methylation has emerged as an important epigenetic regulator of brain processes, including circadian rhythms. However, how DNA methylation intervenes between environmental signals, such as light entrainment, and the transcriptional and translational molecular mechanisms of the cellular clock is currently unknown. Here, we studied the after-hours mice, which have a point mutation in the Fbxl3 gene and a lengthened circadian period. Methods In this study, we used a combination of in vivo, ex vivo and in vitro approaches. We measured retinal responses in Afh animals and we have run reduced representation bisulphite sequencing (RRBS), pyrosequencing and gene expression analysis in a variety of brain tissues ex vivo. In vitro, we used primary neuronal cultures combined to micro electrode array (MEA) technology and gene expression. Results We observed functional impairments in mutant neuronal networks, and a reduction in the retinal responses to light-dependent stimuli. We detected abnormalities in the expression of photoreceptive melanopsin (OPN4). Furthermore, we identified alterations in the DNA methylation pathways throughout the retinohypothalamic tract terminals and links between the transcription factor Rev-Erbα and Fbxl3. Conclusions The results of this study, primarily represent a contribution towards an understanding of electrophysiological and molecular phenotypic responses to external stimuli in the Afh model. Moreover, as DNA methylation has recently emerged as a new regulator of neuronal networks with important consequences for circadian behaviour, we discuss the impact of the Afh mutation on the epigenetic landscape of circadian biology.


2020 ◽  
Author(s):  
Kévin Brunet ◽  
François Arrivé ◽  
Jean-Philippe Martellosio ◽  
Isabelle Lamarche ◽  
Sandrine Marchand ◽  
...  

Abstract Alveolar macrophages (AM) are the first-line lung defense against Mucorales in pulmonary mucormycosis. Since corticosteroid use is a known risk factor for mucormycosis, the aim of this study was to describe the role of corticosteroids on AM capacities to control Lichtheimia corymbifera spore growth using a new ex vivo model. An in vivo mouse model was developed to determine the acetate cortisone dose able to trigger pulmonary invasive infection. Then, in the ex vivo model, male BALB/c mice were pretreated with the corticosteroid regimen triggering invasive infection, before AM collection through bronchoalveolar lavage. AMs from corticosteroid-treated mice and untreated control AMs were then exposed to L. corymbifera spores in vitro (ratio 1:5). AM control of fungal growth, adherence/phagocytosis, and oxidative burst were assessed using optical densities by spectrophotometer, flow cytometry, and 2', 7'-dichlorofluoresceine diacetate fluorescence, respectively. Cortisone acetate at 500 mg/kg, at D-3 and at D0, led to pulmonary invasive infection at D3. Co-incubated spores and AMs from corticosteroid-treated mice had significantly higher absorbance (fungal growth) than co-incubated spores and control AMs, at 24 h (P = .025), 36 h (P = .004), and 48 h (P = .001). Colocalization of spores with AMs from corticosteroid-treated mice was significantly lower than for control AMs (7.6 ± 1.9% vs 22.3 ± 5.8%; P = .003), reflecting spore adherence and phagocytosis inhibition. Finally, oxidative burst was significantly increased when control AMs were incubated with spores (P = 0.029), while corticosteroids hampered oxidative burst from treated AMs (P = 0.321). Corticosteroids enhanced fungal growth of L. corymbifera through AM phagocytosis inhibition and burst oxidative decrease in our ex vivo model. Lay Summary The aim of this study was to describe the impact of corticosteroids on alveolar macrophage (AM) capacities to control Mucorales growth in a new murine ex vivo model. Corticosteroids enhanced fungal growth of L. corymbifera through AM phagocytosis inhibition and burst oxidative decrease.


Folia Medica ◽  
2017 ◽  
Vol 59 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Kalpesh C. Ashara ◽  
Ketan V. Shah

Abstract Background: Ophthalmic formulations of chloramphenicol have poor bioavailability of chloramphenicol in the ocular cavity. Aim: The present study aimed at exploring the impact of different oil mixtures in the form of emulsion on the permeability of chloramphenicol after ocular application. Materials and methods: Selection of oil mixture and ratio of the components was made by an equilibrium solubility method. An emulsifier was chosen according to its emulsification properties. A constrained simplex centroid design was used for the assessment of the emulsion development. Emulsions were evaluated for physicochemical properties; zone of inhibition, in-vitro diffusion and ex-vivo local accumulation of chloramphenicol. Validation of the design using check-point batch and reduced polynomial equations were also developed. Optimization of the emulsion was developed by software Design® expert 6.0.8. Assessment of the osmolarity, ocular irritation, sterility testing and isotonicity of optimized batch were also made. Results: Parker Neem®, olive and peppermint oils were selected as an oil phase in the ratio 63.64:20.2:16.16. PEG-400 was selected as an emulsifier according to a pseudo-ternary phase diagram. Constrained simplex-centroid design was applied in the range of 25-39% water, 55-69% PEG-400, 5-19% optimized oil mixture, and 1% chloramphenicol. Unpaired Student’s t-test showed for in-vitro and ex-vivo studies that there was a significant difference between the optimized batch of emulsion and Chloramphenicol eye caps (a commercial product) according to both were equally safe. Conclusion: The optimized batch of an emulsion of chloramphenicol was found to be as safe as and more effective than Chloramphenicol eye caps.


2020 ◽  
Vol 21 (10) ◽  
pp. 3631 ◽  
Author(s):  
Raffaella Boggia ◽  
Federica Turrini ◽  
Alessandra Roggeri ◽  
Guendalina Olivero ◽  
Francesca Cisani ◽  
...  

The immune system and the central nervous system message each other to preserving central homeostasis. Both systems undergo changes during aging that determine central age-related defects. Ellagic acid (EA) is a natural product which is beneficial in both peripheral and central diseases, including aging. We analyzed the impact of the oral administration of a new oral ellagic acid micro-dispersion (EAm), that largely increased the EA solubility, in young and old mice. Oral EAm did not modify animal weight and behavioral skills in young and old mice, but significantly recovered changes in “ex-vivo, in vitro” parameters in old animals. Cortical noradrenaline exocytosis decreased in aged mice. EAm administration did not modify noradrenaline overflow in young animals, but recovered it in old mice. Furthermore, GFAP staining was increased in the cortex of aged mice, while IBA-1 and CD45 immunopositivities were unchanged when compared to young ones. EAm treatment significantly reduced CD45 signal in both young and old cortical lysates; it diminished GFAP immunopositivity in young mice, but failed to affect IBA-1 expression in both young and old animals. Finally, EAm treatment significantly reduced IL1beta expression in old mice. These results suggest that EAm is beneficial to aging and represents a nutraceutical ingredient for elders.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 299 ◽  
Author(s):  
Raanan Gvirtz ◽  
Navit Ogen-Shtern ◽  
Guy Cohen

Several in vitro models that mimic different aspects of local skin inflammation exist. The use of ex vivo human skin organ culture (HSOC) has been reported previously. However, comprehensive evaluation of the cytokine secretory capacity of the system and its kinetics has not been performed. Objective: the aim of the current study was to investigate the levels and secretion pattern of key cytokine from human skin tissue upon lipopolysaccharide (LPS) stimulation. HSOC maintained in an air–liquid interface was used. Epidermal and tissue viability was monitored by MTT and Lactate Dehydrogenase (LDH) activity assay, respectively. Cytokine levels were examined by ELISA and multiplex array. HSOCs were treated without or with three different LPS subtypes and the impact on IL-6 and IL-8 secretion was evaluated. The compounds enhanced the secreted levels of both cytokines. However, differences were observed in their efficacy and potency. Next, a kinetic multiplex analysis was performed on LPS-stimulated explants taken from three different donors to evaluate the cytokine secretion pattern during 0–72 h post-induction. The results revealed that the pro-inflammatory cytokines IL-6, IL-8, TNFα and IL-1β were up-regulated by LPS stimuli. IL-10, an anti-inflammatory cytokine, was also induced by LPS, but exhibited a different secretion pattern, peak time and maximal stimulation values. IL-1α and IL-15 showed donor-specific changes. Lastly, dexamethasone attenuated cytokine secretion in five independent repetitions, supporting the ability of the system to be used for drug screening. The collective results demonstrate that several cytokines can be used as valid inflammatory markers, regardless of changes in the secretion levels due to donor’s specific alterations.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2606
Author(s):  
Carlotta Paoli ◽  
Alessandro Carrer

The carcinogenesis of pancreatic ductal adenocarcinoma (PDA) progresses according to multi-step evolution, whereby the disease acquires increasingly aggressive pathological features. On the other hand, disease inception is poorly investigated. Decoding the cascade of events that leads to oncogenic transformation is crucial to design strategies for early diagnosis as well as to tackle tumor onset. Lineage-tracing experiments demonstrated that pancreatic cancerous lesions originate from acinar cells, a highly specialized cell type in the pancreatic epithelium. Primary acinar cells can survive in vitro as organoid-like 3D spheroids, which can transdifferentiate into cells with a clear ductal morphology in response to different cell- and non-cell-autonomous stimuli. This event, termed acinar-to-ductal metaplasia, recapitulates the histological and molecular features of disease initiation. Here, we will discuss the isolation and culture of primary pancreatic acinar cells, providing a historical and technical perspective. The impact of pancreatic cancer research will also be debated. In particular, we will dissect the roles of transcriptional, epigenetic, and metabolic reprogramming for tumor initiation and we will show how that can be modeled using ex vivo acinar cell cultures. Finally, mechanisms of PDA initiation described using organotypical cultures will be reviewed.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 168 ◽  
Author(s):  
Margherita Falavigna ◽  
Paul Stein ◽  
Gøril Flaten ◽  
Massimiliano di Cagno

Mucosal drug delivery accounts for various administration routes (i.e., oral, vaginal, ocular, pulmonary, etc.) and offers a vast surface for the permeation of drugs. However, the mucus layer which shields and lubricates all mucosal tissues can compromise drugs from reaching the epithelial site, thus affecting their absorption and therapeutic effect. Therefore, the effect of the mucus layer on drug absorption has to be evaluated early in the drug-development phase, prior to in vivo studies. For this reason, we developed a simple, cost-effective and reproducible method employing UV-visible localized spectroscopy for the assessment of the interaction between mucin and drugs with different physicochemical characteristics. The mucin–drug interaction was investigated by measuring the drug relative diffusivity (Drel) in the presence of mucin, and the method was validated by fitting experimental and mathematical data. In vitro permeability studies were also performed using the mucus-covered artificial permeation barrier (mucus–PVPA, Phospholipid Vesicle-based Permeation Assay) for comparison. The obtained results showed that the diffusion of drugs was hampered by the presence of mucin, especially at higher concentrations. This novel method proved to be suitable for the investigation on the extent of mucin–drug interaction and can be successfully used to assess the impact that the mucus layer has on drug absorption.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Payal Joglekar ◽  
Hua Ding ◽  
Pablo Canales-Herrerias ◽  
Pankaj Jay Pasricha ◽  
Justin L. Sonnenburg ◽  
...  

ABSTRACT Gut-derived immunoglobulin A (IgA) is the most abundant antibody secreted in the gut that shapes gut microbiota composition and functionality. However, most of the microbial antigens targeted by gut IgA remain unknown, and the functional effects of IgA targeting these antigens are currently understudied. This study provides a framework for identifying and characterizing gut microbiota antigens targeted by gut IgA. We developed a small intestinal ex vivo culture assay to harvest lamina propria IgA from gnotobiotic mice, with the aim of identifying antigenic targets in a model human gut commensal, Bacteroides thetaiotaomicron VPI-5482. Colonization by B. thetaiotaomicron induced a microbe-specific IgA response that was reactive against diverse antigens, including capsular polysaccharides, lipopolysaccharides, and proteins. IgA against microbial protein antigens targeted membrane and secreted proteins with diverse functionalities, including an IgA specific against proteins of the polysaccharide utilization locus (PUL) that are necessary for utilization of fructan, which is an important dietary polysaccharide. Further analyses demonstrated that the presence of dietary fructan increased the production of fructan PUL-specific IgA, which then downregulated the expression of fructan PUL in B. thetaiotaomicron, both in vivo and in vitro. Since the expression of fructan PUL has been associated with the ability of B. thetaiotaomicron to colonize the gut in the presence of dietary fructans, our work suggests a novel role for gut IgA in regulating microbial colonization by modulating their metabolism. IMPORTANCE Given the significant impact that gut microbes have on our health, it is essential to identify key host and environmental factors that shape this diverse community. While many studies have highlighted the impact of diet on gut microbiota, little is known about how the host regulates this critical diet-microbiota interaction. In our present study, we discovered that gut IgA targeted a protein complex involved in the utilization of an important dietary polysaccharide: fructan. While the presence of dietary fructans was previously thought to allow unrestricted growth of fructan-utilizing bacteria, our work shows that gut IgA, by targeting proteins responsible for fructan utilization, provides the host with tools that can restrict the microbial utilization of such polysaccharides, thereby controlling their growth.


2020 ◽  
Vol 21 (18) ◽  
pp. 6617 ◽  
Author(s):  
Angela Fabiano ◽  
Denise Beconcini ◽  
Chiara Migone ◽  
Anna Maria Piras ◽  
Ylenia Zambito

As a natural polysaccharide, chitosan has good biocompatibility, biodegradability and biosecurity. The hydroxyl and amino groups present in its structure make it an extremely versatile and chemically modifiable material. In recent years, various synthetic strategies have been used to modify chitosan, mainly to solve the problem of its insolubility in neutral physiological fluids. Thus, derivatives with negative or positive fixed charge were synthesized and used to prepare innovative drug delivery systems. Positively charged conjugates showed improved properties compared to unmodified chitosan. In this review the main quaternary ammonium derivatives of chitosan will be considered, their preparation and their applications will be described to evaluate the impact of the positive fixed charge on the improvement of the properties of the drug delivery systems based on these polymers. Furthermore, the performances of the proposed systems resulting from in vitro and ex vivo experiments will be taken into consideration, with particular attention to cytotoxicity of systems, and their ability to promote drug absorption.


Sign in / Sign up

Export Citation Format

Share Document