scholarly journals Genetic diversity in terrestrial subsurface ecosystems impacted by geological degassing

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Till L. V. Bornemann ◽  
Panagiotis S. Adam ◽  
Victoria Turzynski ◽  
Ulrich Schreiber ◽  
Perla Abigail Figueroa-Gonzalez ◽  
...  

AbstractEarth’s mantle releases 38.7 ± 2.9 Tg/yr CO2 along with other reduced and oxidized gases to the atmosphere shaping microbial metabolism at volcanic sites across the globe, yet little is known about its impact on microbial life under non-thermal conditions. Here, we perform comparative metagenomics coupled to geochemical measurements of deep subsurface fluids from a cold-water geyser driven by mantle degassing. Key organisms belonging to uncultivated Candidatus Altiarchaeum show a global biogeographic pattern and site-specific adaptations shaped by gene loss and inter-kingdom horizontal gene transfer. Comparison of the geyser community to 16 other publicly available deep subsurface sites demonstrate a conservation of chemolithoautotrophic metabolism across sites. In silico replication measures suggest a linear relationship of bacterial replication with ecosystems depth with the exception of impacted sites, which show near surface characteristics. Our results suggest that subsurface ecosystems affected by geological degassing are hotspots for microbial life in the deep biosphere.

Author(s):  
Till L.V. Bornemann ◽  
Panagiotis S. Adam ◽  
Victoria Turzynski ◽  
Ulrich Schreiber ◽  
Perla Abigail Figueroa-Gonzalez ◽  
...  

AbstractMantle degassing provides a substantial amount of reduced and oxidized gases shaping microbial metabolism at volcanic sites across the globe, yet little is known about its impact on microbial life under non-thermal conditions. Here, we characterized deep subsurface fluids from a cold-water geyser driven by mantle degassing using genome-resolved metagenomics to investigate how the gases impact the metabolism and activity of indigenous microbes compared to non-impacted sites. While species-specific analyses of Altiarchaeota suggest site-specific adaptations and a particular biogeographic pattern, chemolithoautotrophic core features of the communities appeared to be conserved across 17 groundwater ecosystems between 5 and 3200 m depth. We identified a significant negative correlation between ecosystem depth and bacterial replication, except for samples impacted by high amounts of subsurface gases, which exhibited near-surface activity. Our results suggest that geological degassing leads to higher nutrient flows and microbial activity in the deep subsurface than previously estimated.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Henrik Drake ◽  
Nick M. W. Roberts ◽  
Manuel Reinhardt ◽  
Martin Whitehouse ◽  
Magnus Ivarsson ◽  
...  

AbstractEarth’s crust contains a substantial proportion of global biomass, hosting microbial life up to several kilometers depth. Yet, knowledge of the evolution and extent of life in this environment remains elusive and patchy. Here we present isotopic, molecular and morphological signatures for deep ancient life in vein mineral specimens from mines distributed across the Precambrian Fennoscandian shield. Stable carbon isotopic signatures of calcite indicate microbial methanogenesis. In addition, sulfur isotope variability in pyrite, supported by stable carbon isotopic signatures of methyl-branched fatty acids, suggest subsequent bacterial sulfate reduction. Carbonate geochronology constrains the timing of these processes to the Cenozoic. We suggest that signatures of an ancient deep biosphere and long-term microbial activity are present throughout this shield. We suggest that microbes may have been active in the continental igneous crust over geological timescales, and that subsurface investigations may be valuable in the search for extra-terrestrial life.


2021 ◽  
Author(s):  
Thomas Douglas ◽  
Caiyun Zhang

The seasonal snowpack plays a critical role in Arctic and boreal hydrologic and ecologic processes. Though snow depth can be different from one season to another there are repeated relationships between ecotype and snowpack depth. Alterations to the seasonal snowpack, which plays a critical role in regulating wintertime soil thermal conditions, have major ramifications for near-surface permafrost. Therefore, relationships between vegetation and snowpack depth are critical for identifying how present and projected future changes in winter season processes or land cover will affect permafrost. Vegetation and snow cover areal extent can be assessed rapidly over large spatial scales with remote sensing methods, however, measuring snow depth remotely has proven difficult. This makes snow depth–vegetation relationships a potential means of assessing snowpack characteristics. In this study, we combined airborne hyperspectral and LiDAR data with machine learning methods to characterize relationships between ecotype and the end of winter snowpack depth. Our results show hyperspectral measurements account for two thirds or more of the variance in the relationship between ecotype and snow depth. An ensemble analysis of model outputs using hyperspectral and LiDAR measurements yields the strongest relationships between ecotype and snow depth. Our results can be applied across the boreal biome to model the coupling effects between vegetation and snowpack depth.


Author(s):  
Youtong Zheng ◽  
Haipeng Zhang ◽  
Daniel Rosenfeld ◽  
Seoung-Soo Lee ◽  
Tianning Su ◽  
...  

AbstractWe explore the decoupling physics of a stratocumulus-topped boundary layer (STBL) moving over cooler water, a situation mimicking the warm air advection (WADV). We simulate an initially well-mixed STBL over a doubly periodic domain with the sea surface temperature decreasing linearly over time using the System for Atmospheric Modeling large-eddy model. Due to the surface cooling, the STBL becomes increasingly stably stratified, manifested as a near-surface temperature inversion topped by a well-mixed cloud-containing layer. Unlike the stably stratified STBL in cold air advection (CADV) that is characterized by cumulus coupling, the stratocumulus deck in the WADV is unambiguously decoupled from the sea surface, manifested as weakly negative buoyancy flux throughout the sub-cloud layer. Without the influxes of buoyancy from the surface, the convective circulation in the well-mixed cloud-containing layer is driven by cloud-top radiative cooling. In such a regime, the downdrafts propel the circulation, in contrast to that in CADV regime for which the cumulus updrafts play a more determinant role. Such a contrast in convection regime explains the difference in many aspects of the STBLs including the entrainment rate, cloud homogeneity, vertical exchanges of heat and moisture, and lifetime of the stratocumulus deck, with the last being subject to a more thorough investigation in part 2. Finally, we investigate under what conditions a secondary stratus near the surface (or fog) can form in the WADV. We found that weaker subsidence favors the formation of fog whereas a more rapid surface cooling rate doesn’t.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 138
Author(s):  
Yu Wang ◽  
Corene J. Matyas

This study examined whether varying moisture availability and roughness length for the land surface under a simulated Tropical Cyclone (TC) could affect its production of precipitation. The TC moved over the heterogeneous land surface of the southeastern U.S. in the control simulation, while the other simulations featured homogeneous land surfaces that were wet rough, wet smooth, dry rough, and dry smooth. Results suggest that the near-surface atmosphere was modified by the changes to the land surface, where the wet cases have higher latent and lower sensible heat flux values, and rough cases exhibit higher values of friction velocity. The analysis of areal-averaged rain rates and the area receiving low and high rain rates shows that simulations having a moist land surface produce higher rain rates and larger areas of low rain rates in the TC’s inner core. The dry and rough land surfaces produced a higher coverage of high rain rates in the outer regions. Key differences among the simulations happened as the TC core moved over land, while the outer rainbands produced more rain when moving over the coastline. These findings support the assertion that the modifications of the land surface can influence precipitation production within a landfalling TC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Charles S. Cockell ◽  
Bettina Schaefer ◽  
Cornelia Wuchter ◽  
Marco J. L. Coolen ◽  
Kliti Grice ◽  
...  

We report on the effect of the end-Cretaceous impact event on the present-day deep microbial biosphere at the impact site. IODP-ICDP Expedition 364 drilled into the peak ring of the Chicxulub crater, México, allowing us to investigate the microbial communities within this structure. Increased cell biomass was found in the impact suevite, which was deposited within the first few hours of the Cenozoic, demonstrating that the impact produced a new lithological horizon that caused a long-term improvement in deep subsurface colonization potential. In the biologically impoverished granitic rocks, we observed increased cell abundances at impact-induced geological interfaces, that can be attributed to the nutritionally diverse substrates and/or elevated fluid flow. 16S rRNA gene amplicon sequencing revealed taxonomically distinct microbial communities in each crater lithology. These observations show that the impact caused geological deformation that continues to shape the deep subsurface biosphere at Chicxulub in the present day.


2021 ◽  
Author(s):  
Julius Kunz ◽  
Christof Kneisel

<p>The Mackenzie-Delta region is known for widespread permafrost and the association of different landforms, which are characteristic of a periglacial landscape development. Especially the density of closed-system pingos is nowhere on earth higher than in the area of the Tuktoyaktuk Peninsula. This type of pingos is common only in the continuous permafrost zone and is very sensitive to changing thermal conditions. In this study, we investigated the surface and subsurface conditions in the area of such a closed-system Pingo near Parsons Lake in the southern part of the Tuktoyaktuk Peninsula to study its internal structure and evolutional state. Therefore, we used a combined approach of electrical resistivity tomography (ERT), ground-penetrating radar (GPR) and manual frost probing. In addition, a high-resolution digital elevation model and an orthophoto were generated using in situ drone acquisitions. These enabled a detailed and areawide mapping of surface characteristics (e.g. vegetation height or type) and should contribute to the investigation of linkages between surface and subsurface characteristics.</p><p>Such a linkage could be observed comparing the mapped vegetation type and heights with active layer depths derived from manual frost probing and GPR measurements. Both parameters show a significant zonation in the area of the pingo and its surrounding. In addition, the results of the quasi three-dimensional ERT measurements could deliver new insights into the three-dimensional internal structure of the pingo and a massive ice core could be detected. However, the shape as well as the position of the massive ice core in relation to the elevated surface of the pingo differ from the previous theory of closed-system pingo formation and therefore raises some questions. Also the existence of a talik could be confirmed, but its position beside the ice core within the eastern flank of the pingo and not below the massive ice core also differs from the theoretical models and should be discussed.</p>


2018 ◽  
Vol 12 (6) ◽  
pp. 1957-1968 ◽  
Author(s):  
Charles J. Abolt ◽  
Michael H. Young ◽  
Adam L. Atchley ◽  
Dylan R. Harp

Abstract. The goal of this research is to constrain the influence of ice wedge polygon microtopography on near-surface ground temperatures. Ice wedge polygon microtopography is prone to rapid deformation in a changing climate, and cracking in the ice wedge depends on thermal conditions at the top of the permafrost; therefore, feedbacks between microtopography and ground temperature can shed light on the potential for future ice wedge cracking in the Arctic. We first report on a year of sub-daily ground temperature observations at 5 depths and 9 locations throughout a cluster of low-centered polygons near Prudhoe Bay, Alaska, and demonstrate that the rims become the coldest zone of the polygon during winter, due to thinner snowpack. We then calibrate a polygon-scale numerical model of coupled thermal and hydrologic processes against this dataset, achieving an RMSE of less than 1.1 ∘C between observed and simulated ground temperature. Finally, we conduct a sensitivity analysis of the model by systematically manipulating the height of the rims and the depth of the troughs and tracking the effects on ice wedge temperature. The results indicate that winter temperatures in the ice wedge are sensitive to both rim height and trough depth, but more sensitive to rim height. Rims act as preferential outlets of subsurface heat; increasing rim size decreases winter temperatures in the ice wedge. Deeper troughs lead to increased snow entrapment, promoting insulation of the ice wedge. The potential for ice wedge cracking is therefore reduced if rims are destroyed or if troughs subside, due to warmer conditions in the ice wedge. These findings can help explain the origins of secondary ice wedges in modern and ancient polygons. The findings also imply that the potential for re-establishing rims in modern thermokarst-affected terrain will be limited by reduced cracking activity in the ice wedges, even if regional air temperatures stabilize.


Author(s):  
Margo M. Burgess ◽  
Scott Wilkie ◽  
Rick Doblanko ◽  
Ibrahim Konuk

The Norman Wells pipeline is an 869 km long, small diameter, buried, ambient temperature, oil pipeline operated by Enbridge Pipeline (NW) Inc. in the discontinuous permafrost zone of northwestern Canada. Since operation began in 1985, average oil temperatures entering the line have been maintained slightly below 0°C, initially through constant chilling year round and since 1993 through a seasonal cycling of temperatures through a range from −4 to +9°C. At one location, 5 km from the inlet at Norman Wells, on level terrain in an area of widespread permafrost, uplift of a 20 m segment of line was observed in the early 1990s. The uplift gradually increased and by 1997 the pipe was exposed 0.5 m above the ground surface. Detailed studies at the site have included field investigations of terrain and thermal conditions, repeated pipe and ground surface elevation surveys, and annual Geopig surveys. The field work has revealed that the section of line was buried in low density soils, thawed to depths of 4 m on-right-of-way, and not subjected to complete refreezing in winter. The thaw depths are related to surface or near-surface flows from a nearby natural spring, as well as to the development of a thaw bulb around the pipe in the cleared right-of-way. Icings indicative of perennial water flow occur commonly at this location in the winter. The pipe experienced annual cycles of heave and settlement (on the order of 0.5 m) due to seasonal freezing and thawing within the surrounding low density soils. The pipe reached its highest elevation at the end of each winter freezing season, and its lowest elevation at the end of the summer thaw period. Superimposed on this heave/settlement cycle was an additional step-like cycle of increasing pipe strain related to thermal expansion and contraction of the pipe. A remedial program was initiated in the winter of 1997–98 in order to curtail the cumulative uplift of the pipe, reduce the increasing maximum annual pipe strain and ensure pipe safety. A 0.5 m cover of sandbags and coarse rock was placed over the exposed pipe segment. Continued pipe elevation monitoring and annual Geopig surveys have indicated that both seasonal heave/settlement and strains have been reduced subsequent to the remedial loading. Introduction of a gravel berm has also altered both the surrounding hydrologic and ground thermal regimes.


Sign in / Sign up

Export Citation Format

Share Document