Field Observations of Cyclical Pipe-Soil Interactions in Permafrost Terrain, KP 5, Norman Wells Pipeline, Canada

Author(s):  
Margo M. Burgess ◽  
Scott Wilkie ◽  
Rick Doblanko ◽  
Ibrahim Konuk

The Norman Wells pipeline is an 869 km long, small diameter, buried, ambient temperature, oil pipeline operated by Enbridge Pipeline (NW) Inc. in the discontinuous permafrost zone of northwestern Canada. Since operation began in 1985, average oil temperatures entering the line have been maintained slightly below 0°C, initially through constant chilling year round and since 1993 through a seasonal cycling of temperatures through a range from −4 to +9°C. At one location, 5 km from the inlet at Norman Wells, on level terrain in an area of widespread permafrost, uplift of a 20 m segment of line was observed in the early 1990s. The uplift gradually increased and by 1997 the pipe was exposed 0.5 m above the ground surface. Detailed studies at the site have included field investigations of terrain and thermal conditions, repeated pipe and ground surface elevation surveys, and annual Geopig surveys. The field work has revealed that the section of line was buried in low density soils, thawed to depths of 4 m on-right-of-way, and not subjected to complete refreezing in winter. The thaw depths are related to surface or near-surface flows from a nearby natural spring, as well as to the development of a thaw bulb around the pipe in the cleared right-of-way. Icings indicative of perennial water flow occur commonly at this location in the winter. The pipe experienced annual cycles of heave and settlement (on the order of 0.5 m) due to seasonal freezing and thawing within the surrounding low density soils. The pipe reached its highest elevation at the end of each winter freezing season, and its lowest elevation at the end of the summer thaw period. Superimposed on this heave/settlement cycle was an additional step-like cycle of increasing pipe strain related to thermal expansion and contraction of the pipe. A remedial program was initiated in the winter of 1997–98 in order to curtail the cumulative uplift of the pipe, reduce the increasing maximum annual pipe strain and ensure pipe safety. A 0.5 m cover of sandbags and coarse rock was placed over the exposed pipe segment. Continued pipe elevation monitoring and annual Geopig surveys have indicated that both seasonal heave/settlement and strains have been reduced subsequent to the remedial loading. Introduction of a gravel berm has also altered both the surrounding hydrologic and ground thermal regimes.

Author(s):  
Rick M. Doblanko ◽  
James M. Oswell ◽  
Alan J. Hanna

Enbridge Pipelines (NW) Inc. (Enbridge) owns and operates a 323.9 mm outside diameter crude oil pipeline from Norman Wells, Northwest Territories, Canada to Zama, Alberta, Canada (Norman Wells Pipeline). The first of its kind in North America, this pipeline, completely buried in discontinuous permafrost, is approximately 869 kilometres in length. The pipeline, designed to operate at ambient temperatures, was constructed during the winter seasons of 1983–1984 and 1984–1985 and began operations in April 1985. Enbridge (formerly Interprovincial Pipe Line (NW) Ltd.), under various regulatory terms and conditions, is required to monitor and report the effects of pipeline construction and operations associated with the environment and right-of-way. The company has been an active participant in joint research and monitoring working groups consisting of various departments of the Government of Canada, Government of Northwest Territories, and other agencies. Over the past seventeen years, Enbridge has developed a monitoring and surveillance program that ensures the safe operation of the pipeline and protection of the environment. Any significant issues arising from the monitoring program result in mitigative actions based on engineering assessments. Furthermore, Enbridge is mandated to inform the appropriate agencies of issues resulting from the monitoring program. This paper will focus on the terrain and geotechnical monitoring programs initiated by Enbridge over its years of operation of this pipeline and will discuss topics including operations and maintenance activities key to pipelines installed in discontinuous permafrost, condition of the pipeline, and the on-going terrain and slope monitoring program.


Author(s):  
Larry D. Hinzman ◽  
Kevin C. Petrone

Hydrological processes exert strong control over biological and climatic processes in every ecosystem. They are particularly important in the boreal zone, where the average annual temperatures of the air and soil are relatively near the phase-change temperature of water (Chapter 4). Boreal hydrology is strongly controlled by processes related to freezing and thawing, particularly the presence or absence of permafrost. Flow in watersheds underlain by extensive permafrost is limited to the near-surface active layer and to small springs that connect the surface with the subpermafrost groundwater. Ice-rich permafrost, near the soil surface, impedes infiltration, resulting in soils that vary in moisture content from wet to saturated. Interior Alaska has a continental climate with relatively low precipitation (Chapter 4). Soils are typically aeolian or alluvial (Chapter 3). Consequently, in the absence of permafrost, infiltration is relatively high, yielding dry surface soils. In this way, discontinuous permafrost distribution magnifies the differences in soil moisture that might normally occur along topographic gradients. Hydrological processes in the boreal forest are unique due to highly organic soils with a porous organic mat on the surface, short thaw season, and warm summer and cold winter temperatures. The surface organic layer tends to be much thicker on north-facing slopes and in valley bottoms than on south-facing slopes and ridges, reflecting primarily the distribution of permafrost. Soils are cooler and wetter above permafrost, which retards decomposition, resulting in organic matter accumulation (Chapter 15). The markedly different material properties of the soil layers also influence hydrology. The highly porous near-surface soils allow rapid infiltration and, on hillsides, downslope drainage. The organic layer also has a relatively low thermal conductivity, resulting in slow thaw below thick organic layers. The thick organic layer limits the depth of thaw each summer to about 50–100 cm above permafrost (i.e., the active layer). As the active layer thaws, the hydraulic properties change. For example, the moisture-holding capacity increases, and additional subsurface layers become available for lateral flow. The mosaic of Alaskan vegetation depends not only on disturbance history (Chapter 7) but also on hydrology (Chapter 6).


2012 ◽  
Vol 6 (2) ◽  
pp. 367-382 ◽  
Author(s):  
A. Brenning ◽  
M. A. Peña ◽  
S. Long ◽  
A. Soliman

Abstract. Remote sensors face challenges in characterizing mountain permafrost and ground thermal conditions or mapping rock glaciers and debris-covered glaciers. We explore the potential of thermal imaging and in particular thermal inertia mapping in mountain cryospheric research, focusing on the relationships between ground surface temperatures and the presence of ice-debris landforms on one side and land surface temperature (LST) and apparent thermal inertia (ATI) on the other. In our case study we utilize ASTER daytime and nighttime imagery and in-situ measurements of near-surface ground temperature (NSGT) in the Mediterranean Andes during a snow-free and dry observation period in late summer. Spatial patterns of LST and NSGT were mostly consistent with each other both at daytime and at nighttime. Daytime LST over ice-debris landforms was decreased and ATI consequently increased compared to other debris surfaces under otherwise equal conditions, but NSGT showed contradictory results, which underlines the complexity and possible scale dependence of ATI in heterogeneous substrates with the presence of a thermal mismatch and a heat sink at depth. While our results demonstrate the utility of thermal imaging and ATI mapping in a mountain cryospheric context, further research is needed for a better interpretation of ATI patterns in complex thermophysical conditions.


2004 ◽  
Vol 41 (12) ◽  
pp. 1437-1451 ◽  
Author(s):  
K C Karunaratne ◽  
C R Burn

The association of site characteristics with the n-factor, a ratio of air to ground surface temperature, was investigated at five sites in the boreal forest near Mayo, Yukon Territory. Permafrost was in equilibrium with surface conditions at three sites, was degrading at another, and was absent from the fifth. Air and near-surface ground temperatures were recorded by data loggers between September 2000 and April 2002, and mean daily temperatures were accumulated to calculate n-factors for the freezing (nf) and thawing (nt) seasons. Air temperature did not vary between the sites, so inter-site differences in nf and nt were because of variations in surface temperature. Variations in nf between the sites over the two winters were primarily because of differences in snow depth, but at sites with similar snow cover, the surface temperatures were relatively high when the site was underlain by unfrozen ground. During summer, daily mean surface temperatures were initially less than air temperatures. However, once the thawing front had penetrated below the depth of diurnal temperature fluctuation, the air and ground surface temperatures converged. Since the rate of thaw penetration is governed by soil thermal diffusivity, nt varies directly with this property. These results indicate that subsurface conditions, particularly absolute temperature and ground thermal properties, exert considerable influence on n-factors, and, at the Mayo sites, the influence is greater than that of the vegetation.


2019 ◽  
Author(s):  
Matthias Rode ◽  
Harald Schnepfleitner ◽  
Oliver Sass ◽  
Andreas Kellerer-Pirklbauer ◽  
Christoph Gitschthaler

Abstract. Permafrost distribution in rockwalls surrounding receding glaciers is an important factor for rock slope failure and rockwall retreat. The Northern Calcareous Alps of the Eastern European Alps form a geological and climatological transition zone between the Alpine Foreland and the Central Alps. Some of highest summits of this area are located in the Dachstein Massif (47°28'32'' N, 13°36'23'' E) in Austria reaching up to 2995 m a.s.l. Occurrence, thickness and thermal regime of permafrost at this partly glaciated mountain massif are scarcely known and related knowledge is primarily based on regional modeling approaches. We applied a multi method approach with continuous ground surface and near-surface temperature monitoring, measurement of bottom temperature of the winter snow cover, electrical resistivity tomography/ERT, airborne photogrammetry, topographic maps, visual observations and field mapping for permafrost assessment. Our research focused on steep rockwalls consisting of massive limestone above several receding glaciers exposed to different slope aspects at elevations between c.2600–2700 m a.s.l. We aimed to quantify distribution and conditions of bedrock permafrost particularly at the transition zone between the present glacier surface and the adjacent rockwalls. Low ground temperature data suggest that permafrost is mainly found at cold, north exposed rockwalls. At southeast exposed rockwalls permafrost is only expected in very favourable cold conditions at shadowed higher elevations (2700 m a.s.l.). ERT measurements reveal high resistivities (> 30.000 ohm.m) at ≥ 1.5 m depth at north-exposed slopes (highest measured resistivity values > 100 kohm.m). Based on laboratory studies and additional measurements with small scale ERT, these values indicate permafrost existence. Such permafrost bodies were found in the rockwalls at all measurement sites independent of investigated slope orientation. ERT data indicate large permafrost bodies at north exposed sites whereas discontinuous permafrost bodies prevail at northwest and northeast facing rockwalls. In summary, permafrost distribution and conditions around the headwalls of the glaciers of the Dachstein Massif is primarily restricted to the north exposed sector, whereas at the south exposed sector permafrost is restricted to the summit region.


2011 ◽  
Vol 5 (5) ◽  
pp. 2895-2933 ◽  
Author(s):  
A. Brenning ◽  
M. A. Peña ◽  
S. Long ◽  
A. Soliman

Abstract. Remote sensors face challenges in characterizing mountain permafrost and ground thermal conditions or mapping rock glaciers and debris-covered glaciers. We explore the potentials of thermal imaging and in particular thermal inertia mapping in mountain cryospheric research, focusing on the relationships between ground surface temperatures and the presence of ice-debris landforms on one side and land surface temperature (LST) and apparent thermal inertia (ATI) on the other. In our case study we utilize ASTER daytime and nighttime imagery and in-situ measurements of near-surface ground temperature (NSGT) in the Mediterranean Andes during a snow-free and dry observation period in late summer. Spatial patterns of LST and NSGT were mostly consistent with each other both at daytime and at nighttime. Daytime LST over ice-debris landforms was decreased and ATI consequently increased compared to other debris surfaces under otherwise equal conditions, but NSGT showed contradictory results, which underlines the complexity and possible scale dependence of ATI in heterogeneous substrates with the presence of a thermal mismatch and a heat sink at depth. While our results demonstrate the utility of thermal imaging and ATI mapping in a mountain cryospheric context, further research is needed for a better interpretation of ATI patterns in complex thermophysical conditions


Author(s):  
Xingwen Fan ◽  
Zhanju Lin ◽  
fujiun niu ◽  
Zeyong Gao ◽  
Jing Luo ◽  
...  

Slope direction affects permafrost degradation because of its influence on the surface energy balance. The ground thermal difference between slopes of differing aspect is known, however there are few detailed reports on differences in soil temperature, humidity, and radiation from slopes in permafrost areas that caused permafrost degradation. In this study variations in air and ground thermal regime were compared at two sloping sites with opposing aspect in a permafrost region of the Qinghai-Tibetan Plateau (QTP). The results indicate that air temperatures (Ta) were similar at both sites in September 2016-19. However, ground temperatures, including the ground surface temperature (Ts), the temperature near the permafrost surface (Tps), and the permafrost temperature at 5.0 m depth (Tg), and soil moisture content within the active layer differed greatly between sites. The mean annual Ts, Tps, and Tg over three years (2016-19) were 1.3-1.4 ℃ higher at the sunny slope than at the shady slope. The near-surface soil moisture content during the thawing season was 10-13% lower at the sunny slope (~22-27%) than the shady slope (~35-38%), and was significantly and negatively correlated with ground temperature. Shortwave downward radiation (DR) at the sunny slope was higher than at the shady slope. However, net radiation (Rn) was lower at the sunny slope due to the greater surface albedo at the site. The results highlight a complex spatial pattern of ground thermal conditions in mountainous permafrost regions, help define the climate-permafrost relation in the region, and for understanding permafrost degradation on a local scale.


1998 ◽  
Vol 35 (2) ◽  
pp. 184-199 ◽  
Author(s):  
C R Burn

Forest fires in permafrost areas often modify ground surface conditions, causing deepening of the active layer and thawing of near-surface permafrost. Takhini River valley lies in the discontinuous permafrost zone of southern Yukon Territory. The valley floor is covered by glaciolacustrine deposits, which are locally ice rich. In 1958 extensive forest fires burned most of the vegetation and the soil organic horizon in the valley, but, 50 km west of Whitehorse, 1 km2 of spruce forest adjacent to the Alaska Highway escaped burning. Permafrost beneath this stand of trees is in equilibrium with surface conditions: the active layer is 1.4 m thick, the base of permafrost is at 18.5 m, the annual mean temperature at the top of permafrost (1.5 m) is -0.8°C, and the temperature gradient in permafrost is constant with depth. At burned sites nearby there has been little regeneration of forest vegetation since the fire, and long-term permafrost degradation has occurred. At one burned site, the permafrost table is more than 3.75 m below the ground surface, the mean annual ground temperature is -0.2°C or warmer throughout the profile, the annual mean temperature at 1.5 m is 0.1°C, and permafrost is thawing from top and bottom. A simplified analytical model for thawing of permafrost indicates that over a millennium will be required to degrade permafrost completely at this site, if thawing proceeds from the top down. The result demonstrates the persistence of ice-rich permafrost a few metres below the ground surface, even at sites near the southern margin of permafrost in Canada.


2021 ◽  
Vol 18 (1) ◽  
pp. 145-162
Author(s):  
B Butchibabu ◽  
Prosanta Kumar Khan ◽  
P C Jha

Abstract This study aims for the protection of a crude-oil pipeline, buried at a shallow depth, against a probable environmental hazard and pilferage. Both surface and borehole geophysical techniques such as electrical resistivity tomography (ERT), ground penetrating radar (GPR), surface seismic refraction tomography (SRT), cross-hole seismic tomography (CST) and cross-hole seismic profiling (CSP) were used to map the vulnerable zones. Data were acquired using ERT, GPR and SRT along the pipeline for a length of 750 m, and across the pipeline for a length of 4096 m (over 16 profiles of ERT and SRT with a separation of 50 m) for high-resolution imaging of the near-surface features. Borehole techniques, based on six CSP and three CST, were carried out at potentially vulnerable locations up to a depth of 30 m to complement the surface mapping with high-resolution imaging of deeper features. The ERT results revealed the presence of voids or cavities below the pipeline. A major weak zone was identified at the central part of the study area extending significantly deep into the subsurface. CSP and CST results also confirmed the presence of weak zones below the pipeline. The integrated geophysical investigations helped to detect the old workings and a deformation zone in the overburden. These features near the pipeline produced instability leading to deformation in the overburden, and led to subsidence in close vicinity of the concerned area. The area for imminent subsidence, proposed based on the results of the present comprehensive geophysical investigations, was found critical for the pipeline.


Sign in / Sign up

Export Citation Format

Share Document