scholarly journals Connexin 43 Hemichannels Regulate the Expression of Wound Healing-Associated Genes in Human Gingival Fibroblasts

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Rana Tarzemany ◽  
Guoqiao Jiang ◽  
Jean X. Jiang ◽  
Hannu Larjava ◽  
Lari Häkkinen
Author(s):  
Jens Weusmann ◽  
James Deschner ◽  
Jean-Claude Imber ◽  
Anna Damanaki ◽  
Natalia D. P. Leguizamón ◽  
...  

Abstract Objectives Air-polishing has been used in the treatment of periodontitis and gingivitis for years. The introduction of low-abrasive powders has enabled the use of air-polishing devices for subgingival therapy. Within the last decade, a wide range of different low-abrasive powders for subgingival use has been established. In this study, the effects of a glycine powder and a trehalose powder on human gingival fibroblasts (HGF) were investigated. Methods HGF were derived from three systemically and periodontally healthy donors. After 24 h and 48 h of incubation time, mRNA levels, and after 48 h, protein levels of TNFα, IL-8, CCL2, and VEGF were determined. In addition, NF-κB p65 nuclear translocation and in vitro wound healing were assessed. Statistical analysis was performed by ANOVA and post hoc Dunnett’s and Tukey’s tests (p < 0.05). Results Glycine powder significantly increased the expression of proinflammatory genes and showed exploitation of the NF-κB pathway, albeit trehalose powder hardly interfered with cell function and did not trigger the NF-κB pathway. In contrast to trehalose, glycine showed a significant inhibitory effect on the in vitro wound healing rate. Conclusion Subgingivally applicable powders for air-polishing devices can regulate cell viability and proliferation as well as cytokine expression. Our in vitro study suggests that the above powders may influence HGF via direct cell effects. Trehalose appears to be relatively inert compared to glycine powder.


2016 ◽  
Vol 5 (2) ◽  
pp. 83-88
Author(s):  
Thuy Anh Vu Pham ◽  
Hao TT Nguyen ◽  
My TN Nguyen ◽  
Van NL Trinh ◽  
Nga Y Tran ◽  
...  

ABSTRACT Aims Our study focused on the fabrication of platelet-rich fibrin (PRF) and evaluated its influences on cell behaviors, including proliferation and migration. Materials and methods Platelet-rich fibrin was prepared from human peripheral blood according to Choukroun's method without using nonanticoagulant and foreign factors for platelet activation. Platelet-rich fibrin architecture was studied by hematoxylin and eosin staining. The investigation of PRF effects on human gingival fibroblasts (hGFs) was conducted via PRF liquid extract. Cell proliferation was determined via the number of cells after a period of time incubated in PRF liquid extract. Influence of PRF liquid extract on the migration of hGFs was conducted via scratch wound healing assay. Results Histological staining reviewed the natural fibrin fiber matrix of PRF. Platelet-rich fibrin liquid extract promoted hGF proliferation after 7 days of cultivation. Human gingival fibroblast proliferation in PRF liquid extract was more superior than those cultured in complete medium. Platelet-rich fibrin was also found to be able to promote the migration of hGFs for up to 48 hours. Conclusion These results indicated that PRF is suitable to be used as autologous natural biomaterial in supporting wound healing and in further application in periodontitis treatments. How to cite this article Nguyen HTT, Nguyen MTN, Trinh VNL, Tran NY, Ngo LTQ, Pham TAV, Tran HLB. Platelet-rich Fibrin Influences on Proliferation and Migration of Human Gingival Fibroblasts. Int J Experiment Dent Sci 2016;5(2):83-88.


2020 ◽  
Vol 47 (7) ◽  
pp. 851-862
Author(s):  
Jiarui Bi ◽  
Maria Fernanda Barona Intriago ◽  
Leeni Koivisto ◽  
Guoqiao Jiang ◽  
Lari Häkkinen ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3542 ◽  
Author(s):  
Kazutaka Imai ◽  
Hirohito Kato ◽  
Yoichiro Taguchi ◽  
Makoto Umeda

Shikonin, an active ingredient of Lithospermum erythrorhizon, exerts anti-inflammatory and antibacterial effects, and promotes wound healing. We investigated whether shikonin stimulated gingival tissue wound healing in human gingival fibroblasts (hGF). In addition, we evaluated the effects of shikonin on the mitogen-activated protein kinase (MAPK) signaling pathway, which has an important role in wound healing. hGF were subjected to primary culture using gingiva collected from patients. The cells were exposed to/treated with Shikonin at concentrations ranging from 0.01 to 100 μM. The optimal concentration was determined by cell proliferation and migration assays. Type I collagen and fibronectin synthesis, the gene expression of vascular endothelial growth factor (VEGF) and FN, and the phosphorylation of Extracellular signal-regulated kinase (ERK) 1/2 were investigated. Identical experiments were performed in the presence of PD98059 our data suggest, a specific ERK 1/2 inhibitor. Shikonin significantly promoted hGF proliferation and migration. Shikonin (1 µM) was chosen as the optimal concentration. Shikonin promoted type I collagen and FN synthesis, increased VEGF and FN expression, and induced ERK 1/2 phosphorylation. These changes were partially suppressed by PD98059. In conclusion, Shikonin promoted the proliferation, migration, type I collagen and FN synthesis, and expression of VEGF and FN via ERK 1/2 signaling pathway in hGFs. Therefore, shikonin may promote periodontal tissue wound healing.


2018 ◽  
Vol 371 (1) ◽  
pp. 238-249 ◽  
Author(s):  
J. Cheng ◽  
G. Jiang ◽  
R. Tarzemany ◽  
H. Larjava ◽  
L. Häkkinen

2021 ◽  
Vol 12 (1) ◽  
pp. e25-e25
Author(s):  
Ioannis K. Karoussis ◽  
Kyriaki Kyriakidou ◽  
Costas Psarros ◽  
Panayotis Afouxenides ◽  
Ioannis A. Vrotsos

Introduction: A substantial amount of evidence supports the positive effect of photobiomodulation on the proliferation and differentiation of various cell types. Several laser wavelengths have been used for wound healing improvement, and their actual outcome depends on the settings utilized during irradiation. However, the heterogeneous wavelengths and laser settings applied in the existing literature make it difficult to draw solid conclusions and comparison of different studies. The aim of the present study is to evaluate and compare the effects of various doses of laser energy, provided by an 810 nm diode, on human gingival fibroblasts in terms of proliferation and expression of growth factors with a pivotal role in wound healing. Methods: Human gingival fibroblasts were cultured on plastic tissue culture and irradiated with 2, 4, 6 or 12 J/cm2 . The effects of the low-level laser therapy (LLLT) using an 810 nm diode laser on growth factor expression (EGF, TGF and VEGF) were evaluated by qPCR at 72 hours and 7 days after irradiation. Cell proliferation was evaluated at 24, 48 and 72 hours after LLLT using MTT assay. Results: Energy density of 12 J/cm2 provoked irradiated gingival fibroblasts to demonstrate significantly higher proliferation as well as higher gene expression of Col1, VEGF and EGF. LLLT positive effects were obvious up to 7 days post-irradiation. Conclusion: LLLT with 810 nm presents beneficial effects on proliferation, collagen production and growth factor expression in human gingival fibroblast cells. The application of 12 J/cm2 can be suggested as the optimal energy density for the enhancement of the wound healing process.


Sign in / Sign up

Export Citation Format

Share Document