scholarly journals A genome-wide screen for human salicylic acid (SA)-binding proteins reveals targets through which SA may influence development of various diseases

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hyong Woo Choi ◽  
Lei Wang ◽  
Adrian F. Powell ◽  
Susan R. Strickler ◽  
Dekai Wang ◽  
...  

Abstract Salicylic acid (SA) is the major metabolite and active ingredient of aspirin; both compounds reduce pain, fever, and inflammation. Despite over a century of research, aspirin/SA’s mechanism(s) of action is still only partially understood. Here we report the results of a genome-wide, high-throughput screen to identify potential SA-binding proteins (SABPs) in human HEK293 cells. Following photo-affinity crosslinking to 4-azidoSA and immuno-selection with an anti-SA antibody, approximately 2,000 proteins were identified. Among these, 95 were enriched more than 10-fold. Pathway enrichment analysis with these 95 candidate SABPs (cSABPs) revealed possible involvement of SA in multiple biological pathways, including (i) glycolysis, (ii) cytoskeletal assembly and/or signaling, and (iii) NF-κB-mediated immune signaling. The two most enriched cSABPs, which corresponded to the glycolytic enzymes alpha-enolase (ENO1) and pyruvate kinase isozyme M2 (PKM2), were assessed for their ability to bind SA and SA’s more potent derivative amorfrutin B1 (amoB1). SA and amoB1 bound recombinant ENO1 and PKM2 at low millimolar and micromolar concentrations, respectively, and inhibited their enzymatic activities in vitro. Consistent with these results, low millimolar concentrations of SA suppressed glycolytic activity in HEK293 cells. To provide insights into how SA might affect various human diseases, a cSABP-human disorder/disease network map was also generated.

2016 ◽  
Author(s):  
Long Qian ◽  
Edo Kussell

AbstractEctopic DNA binding by transcription factors and other DNA binding proteins can be detrimental to cellular functions and ultimately to organismal fitness. The frequency of protein-DNA binding at non-functional sites depends on the global composition of a genome with respect to all possible short motifs, or k-mer words. To determine whether weak yet ubiquitous protein-DNA interactions could exert significant evolutionary pressures on genomes, we correlate in vitro measurements of binding strengths on all 8-mer words from a large collection of transcription factors, in several different species, against their relative genomic frequencies. Our analysis reveals a clear signal of purifying selection to reduce the large number of weak binding sites genome-wide. This evolutionary process, which we call global selection, has a detectable hallmark in that similar words experience similar evolutionary pressure, a consequence of the biophysics of protein-DNA binding. By analyzing a large collection of genomes, we show that global selection exists in all domains of life, and operates through tiny selective steps, maintaining genomic binding landscapes over long evolutionary timescales.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1350-1350 ◽  
Author(s):  
Samir H Barghout ◽  
Neil MacLean ◽  
G. Wei Xu ◽  
Geethu Thomas ◽  
Zachary Blatman ◽  
...  

Abstract UBA1 is the major ubiquitin-activating enzyme that initiates the ubiquitylation cascade whereby proteins are tagged with mono- or polyubiquitin to mark them for proteasomal degradation or modify their functions. Despite having equal levels of UBA1 protein, AML cell lines and primary AML cells are more dependent on UBA1 activity compared to normal hematopoietic cells, rendering them more vulnerable to UBA1 inhibition. Recently, we demonstrated that inhibiting UBA1 with the small-molecule inhibitor TAK-243 was selectively cytotoxic to a subset of AML cells and stem cells in vitro and in vivo through a mechanism at least partly dependent on inducing ER stress (Leukemia, 2018). To identify potential determinants of sensitivity/resistance to TAK-243 (Millennium Pharmaceuticals, Takeda) in AML, we conducted a genome-wide CRISPR/Cas9 knockout screen in OCI-AML2 cells followed by selection with cytotoxic TAK-243 concentrations corresponding to the IC90 and IC99. By next-generation sequencing and enrichment analysis, we then identified genes whose knockout renders AML cells resistant to TAK-243. We identified 34 hits in the IC90 and 11 hits in the IC99 arms of the screen (cut off FDR < 0.2). These hits are involved in signaling pathways including transcriptional regulation, histone methylation, ubiquitin conjugation, cell cycle progression, mTOR and NF-κB signaling pathways, consistent with the broad range of pathways regulated by UBA1-mediated ubiquitylation. We focused our investigation on BEN domain-containing protein 3 (BEND3) that ranked as a top hit in both arms (FDR = 0.0012). Compared to control, all 6 BEND3-targeting gRNAs were enriched up to 10,000 times. BEND3 is a transcriptional repressor that regulates heterochromatin organization. To validate the screen results, we independently knocked out BEND3 in OCI-AML2 cells using the 4 top performing gRNAs in the screen. We confirmed target knockout by immunoblotting. BEND3 knockout did not alter the basal proliferation rate of the cells. However, knockout of BEND3 rendered OCI-AML2 cells resistant to TAK-243 with up to a 4-fold increase in the IC50 by the MTS assay. Resistance to TAK-243 was confirmed by Annexin V/PI staining, PARP cleavage, and colony-forming assays. Cells were cross resistant to the NEDD8-activating enzyme inhibitor pevonedistat (2-fold IC50 increase), but not bortezomib or daunorubicin. As assessed by immunoblotting, BEND3 knockout did not change expression of UBA1, or the related enzymes UBA2, UBA3, or UBA6. BEND3 knockout was associated with reduced induction of ER stress as assessed by levels of CHOP and ATF4 after TAK-243 treatment. Conclusions Through a genome-wide CRISPR screen, we identified BEND3 as a determinant of sensitivity to TAK-243 in AML. Mechanistically, lack of BEND3 expression dampens the ER stress response to UBA1 inhibition. Thus, these results may highlight a new mechanism of sensitivity to TAK-243. Disclosures Schimmer: Jazz Pharmaceuticals: Consultancy; Medivir AB: Research Funding; Otsuka Pharmaceuticals: Consultancy; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Parasitology ◽  
2009 ◽  
Vol 136 (5) ◽  
pp. 469-485 ◽  
Author(s):  
A. S. TAFT ◽  
J. J. VERMEIRE ◽  
J. BERNIER ◽  
S. R. BIRKELAND ◽  
M. J. CIPRIANO ◽  
...  

SUMMARYInfection of the snail,Biomphalaria glabrata, by the free-swimming miracidial stage of the human blood fluke,Schistosoma mansoni, and its subsequent development to the parasitic sporocyst stage is critical to establishment of viable infections and continued human transmission. We performed a genome-wide expression analysis of theS. mansonimiracidia and developing sporocyst using Long Serial Analysis of Gene Expression (LongSAGE). Five cDNA libraries were constructed from miracidia andin vitrocultured 6- and 20-day-old sporocysts maintained in sporocyst medium (SM) or in SM conditioned by previous cultivation with cells of theB. glabrataembryonic (Bge) cell line. We generated 21 440 SAGE tags and mapped 13 381 to theS. mansonigene predictions (v4.0e) either by estimating theoretical 3′ UTR lengths or using existing 3′ EST sequence data. Overall, 432 transcripts were found to be differentially expressed amongst all 5 libraries. In total, 172 tags were differentially expressed between miracidia and 6-day conditioned sporocysts and 152 were differentially expressed between miracidia and 6-day unconditioned sporocysts. In addition, 53 and 45 tags, respectively, were differentially expressed in 6-day and 20-day cultured sporocysts, due to the effects of exposure to Bge cell-conditioned medium.


Author(s):  
Moumita Mukherjee ◽  
Srikanta Goswami

RNA-binding proteins (RBPs) play a significant role in multiple cellular processes with their deregulations strongly associated with cancer. However, there are not adequate evidences regarding global alteration and functions of RBPs in pancreatic cancer, interrogated in a systematic manner. In this study, we have prepared an exhaustive list of RBPs from multiple sources, downloaded gene expression microarray data from a total of 241 pancreatic tumors and 124 normal pancreatic tissues, performed a meta-analysis, and obtained differentially expressed RBPs (DE-RBPs) using the Limma package of R Bioconductor. The results were validated in microarray datasets and the Cancer Genome Atlas (TCGA) RNA sequencing dataset for pancreatic adenocarcinoma (PAAD). Pathway enrichment analysis was performed using DE-RBPs, and we also constructed the protein–protein interaction (PPI) network to detect key modules and hub-RBPs. Coding and noncoding targets for top altered and hub RBPs were identified, and altered pathways modulated by these targets were also investigated. Our meta-analysis identified 45 upregulated and 15 downregulated RBPs as differentially expressed in pancreatic cancer, and pathway enrichment analysis demonstrated their important contribution in tumor development. As a result of PPI network analysis, 26 hub RBPs were detected and coding and noncoding targets for all these RBPs were categorized. Functional exploration characterized the pathways related to epithelial-to-mesenchymal transition (EMT), cell migration, and metastasis to emerge as major pathways interfered by the targets of these RBPs. Our study identified a unique meta-signature of 26 hub-RBPs to primarily modulate pancreatic tumor cell migration and metastasis in pancreatic cancer. IGF2BP3, ISG20, NIP7, PRDX1, RCC2, RUVBL1, SNRPD1, PAIP2B, and SIDT2 were found to play the most prominent role in the regulation of EMT in the process. The findings not only contribute to understand the biology of RBPs in pancreatic cancer but also to evaluate their candidature as possible therapeutic targets.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10560
Author(s):  
Mingrui Shao ◽  
Shize Yang ◽  
Siyuan Dong

Backgrounds Lung adenocarcinoma is a complex disease that results in over 1.8 million deaths a year. Recent advancements in treating and managing lung adenocarcinoma have led to modest decreases in associated mortality rates, owing in part to the multifactorial etiology of the disease. Novel prognostic biomarkers are needed to accurately stage the disease and act as the basis of adjuvant treatments. Material and Methods The microarray datasets GSE75037, GSE31210 and GSE32863 were downloaded from the Gene Expression Omnibus (GEO) database to identify prognostic biomarkers for lung adenocarcinoma and therapy. The differentially expressed genes (DEGs) were identified by GEO2R. Functional and pathway enrichment analysis were performed by Kyoto Encyclopedia of Genes and Genomes and Gene Ontology (GO). Validation was performed based on 72 pairs of lung adenocarcinoma and adjacent normal lung tissues. Results Results showed that the DEGs were mainly focused on cell cycle and DNA replication initiation. Forty-one hub genes were identified and further analyzed by CytoScape. Here, we provide evidence which suggests MCM10 is a potential target with prognostic, diagnostic and therapeutic value. We base this on an integrated approach of comprehensive bioinformatics analysis and in vitro validation using the A549 lung adenocarcinoma cell line. We show that MCM10 overexpression correlates with a poor prognosis, while silencing of this gene decreases aberrant growth by 2-fold. Finally, evaluation of 72 clinical biopsy samples suggests that overexpression of MCM10 in the lung adenocarcinoma highly correlates with larger tumor size. Together, this work suggests that MCM10 may be a clinically relevant gene with both predictive and therapeutic value in lung adenocarcinoma.


2020 ◽  
Vol 6 (43) ◽  
pp. eabb3063
Author(s):  
Wei Xu ◽  
Si-Da Han ◽  
Can Zhang ◽  
Jie-Qiong Li ◽  
Yan-Jiang Wang ◽  
...  

Progranulin (PGRN) is a secreted pleiotropic glycoprotein associated with the development of common neurodegenerative diseases. Understanding the pathophysiological role of PGRN may help uncover biological underpinnings. We performed a genome-wide association study to determine the genetic regulators of cerebrospinal fluid (CSF) PGRN levels. Common variants in region of FAM171A2 were associated with lower CSF PGRN levels (rs708384, P = 3.95 × 10−12). This was replicated in another independent cohort. The rs708384 was associated with increased risk of Alzheimer’s disease, Parkinson’s disease, and frontotemporal dementia and could modify the expression of the FAM171A2 gene. FAM171A2 was considerably expressed in the vascular endothelium and microglia, which are rich in PGRN. The in vitro study further confirmed that the rs708384 mutation up-regulated the expression of FAM171A2, which caused a decrease in the PGRN level. Collectively, genetic, molecular, and bioinformatic findings suggested that FAM171A2 is a key player in regulating PGRN production.


2019 ◽  
Vol 116 (17) ◽  
pp. 8269-8274 ◽  
Author(s):  
Yasuko Araki ◽  
Takayoshi Awakawa ◽  
Motomichi Matsuzaki ◽  
Rihe Cho ◽  
Yudai Matsuda ◽  
...  

Ascofuranone (AF) and ascochlorin (AC) are meroterpenoids produced by various filamentous fungi, includingAcremonium egyptiacum(synonym:Acremonium sclerotigenum), and exhibit diverse physiological activities. In particular, AF is a promising drug candidate against African trypanosomiasis and a potential anticancer lead compound. These compounds are supposedly biosynthesized through farnesylation of orsellinic acid, but the details have not been established. In this study, we present all of the reactions and responsible genes for AF and AC biosyntheses inA. egyptiacum, identified by heterologous expression, in vitro reconstruction, and gene deletion experiments with the aid of a genome-wide differential expression analysis. Both pathways share the common precursor, ilicicolin A epoxide, which is processed by the membrane-bound terpene cyclase (TPC) AscF in AC biosynthesis. AF biosynthesis branches from the precursor by hydroxylation at C-16 by the P450 monooxygenase AscH, followed by cyclization by a membrane-bound TPC AscI. All genes required for AC biosynthesis (ascABCDEFG) and a transcriptional factor (ascR) form a functional gene cluster, whereas those involved in the late steps of AF biosynthesis (ascHIJ) are present in another distantly located cluster. AF is therefore a rare example of fungal secondary metabolites requiring multilocus biosynthetic clusters, which are likely to be controlled by the single regulator, AscR. Finally, we achieved the selective production of AF inA. egyptiacumby genetically blocking the AC biosynthetic pathway; further manipulation of the strain will lead to the cost-effective mass production required for the clinical use of AF.


Hepatology ◽  
2008 ◽  
Vol 49 (2) ◽  
pp. 378-386 ◽  
Author(s):  
Susanne Hagist ◽  
Holger Sültmann ◽  
Gunda Millonig ◽  
Ulrike Hebling ◽  
Dörthe Kieslich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document