scholarly journals Clearance of hepatitis C virus is associated with early and potent but narrowly-directed, Envelope-specific antibodies

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Melanie R. Walker ◽  
Preston Leung ◽  
Auda A. Eltahla ◽  
Alexander Underwood ◽  
Arunasingam Abayasingam ◽  
...  

Abstract Hepatitis C virus (HCV) is one of very few viruses that are either naturally cleared, or alternatively persist to cause chronic disease. Viral diversity and escape, as well as host adaptive immune factors, are believed to control the outcome. To date, there is limited understanding of the critical, early host-pathogen interactions. The asymptomatic nature of early HCV infection generally prevents identification of the transmitted/founder (T/F) virus, and thus the study of host responses directed against the autologous T/F strain. In this study, 14 rare subjects identified from very early in infection (4–45 days) with varied disease outcomes (n = 7 clearers) were examined in regard to the timing, breadth, and magnitude of the neutralizing antibody (nAb) response, as well as evolution of the T/F strain. Clearance was associated with earlier onset and more potent nAb responses appearing at a mean of 71 days post-infection (DPI), but these responses were narrowly directed against the autologous T/F virus or closely related variants. In contrast, a delayed onset of nAbs (mean 425 DPI) was observed in chronic progressors that appear to have targeted longitudinal variants rather than the T/F strain. The nAb responses in the chronic progressors mapped to known CD81 binding epitopes, and were associated with rapid emergence of new viral variants with reduced CD81 binding. We propose that the prolonged period of viremia in the absence of nAbs in these subjects was associated with an increase in viral diversity, affording the virus greater options to escape nAb pressure once it emerged. These findings indicate that timing of the nAb response is essential for clearance. Further investigation of the specificities of the early nAbs and the factors regulating early induction of protective nAbs is needed.

2011 ◽  
Vol 415 (3) ◽  
pp. 503-508 ◽  
Author(s):  
Tingting Li ◽  
Zixuan Chen ◽  
Jinfeng Zeng ◽  
Jingang Zhang ◽  
Wenjing Wang ◽  
...  

2014 ◽  
Vol 125 (1) ◽  
pp. 437-447 ◽  
Author(s):  
Justin R. Bailey ◽  
Lisa N. Wasilewski ◽  
Anna E. Snider ◽  
Ramy El-Diwany ◽  
William O. Osburn ◽  
...  

2020 ◽  
Vol 21 (16) ◽  
pp. 5644
Author(s):  
Janine Kemming ◽  
Robert Thimme ◽  
Christoph Neumann-Haefelin

A functional adaptive immune response is the major determinant for clearance of hepatitis C virus (HCV) infection. However, in the majority of patients, this response fails and persistent infection evolves. Here, we dissect the HCV-specific key players of adaptive immunity, namely B cells and T cells, and describe factors that affect infection outcome. Once chronic infection is established, continuous exposure to HCV antigens affects functionality, phenotype, transcriptional program, metabolism, and the epigenetics of the adaptive immune cells. In addition, viral escape mutations contribute to the failure of adaptive antiviral immunity. Direct-acting antivirals (DAA) can mediate HCV clearance in almost all patients with chronic HCV infection, however, defects in adaptive immune cell populations remain, only limited functional memory is obtained and reinfection of cured individuals is possible. Thus, to avoid potential reinfection and achieve global elimination of HCV infections, a prophylactic vaccine is needed. Recent vaccine trials could induce HCV-specific immunity but failed to protect from persistent infection. Thus, lessons from natural protection from persistent infection, DAA-mediated cure, and non-protective vaccination trials might lead the way to successful vaccination strategies in the future.


2005 ◽  
Vol 79 (17) ◽  
pp. 11095-11104 ◽  
Author(s):  
Ania Owsianka ◽  
Alexander W. Tarr ◽  
Vicky S. Juttla ◽  
Dimitri Lavillette ◽  
Birke Bartosch ◽  
...  

ABSTRACT Hepatitis C virus (HCV) remains a significant threat to the general health of the world's population, and there is a pressing need for the development of new treatments and preventative vaccines. Here, we describe the generation of retrovirus-based pseudoparticles (HCVpp) incorporating a panel of full-length E1E2 clones representative of the major genotypes 1 through 6, and their application to assess the reactivity and neutralizing capability of antisera and monoclonal antibodies raised against portions of the HCV E2 envelope protein. Rabbit antisera raised against either the first hypervariable region or ectodomain of E2 showed limited and strain specific neutralization. By contrast, the monoclonal antibody (MAb) AP33 demonstrated potent neutralization of infectivity against HCVpp carrying E1E2 representative of all genotypes tested. The concentration of AP33 required to achieve 50% inhibition of infection by HCVpp of diverse genotypes ranged from 0.6 to 32 μg/ml. The epitope recognized by MAb AP33 is linear and highly conserved across different genotypes of HCV. Thus, identification of a broadly neutralizing antibody that recognizes a linear epitope is likely to be of significant benefit to future vaccine and therapeutic antibody development.


2003 ◽  
Vol 187 (6) ◽  
pp. 982-987 ◽  
Author(s):  
Wolf Peter Hofmann ◽  
Christoph Sarrazin ◽  
Bernd Kronenberger ◽  
Barbara Schönberger ◽  
Katharina Bruch ◽  
...  

2016 ◽  
Vol 113 (45) ◽  
pp. 12768-12773 ◽  
Author(s):  
Leopold Kong ◽  
David E. Lee ◽  
Rameshwar U. Kadam ◽  
Tong Liu ◽  
Erick Giang ◽  
...  

Hepatitis C virus (HCV) is a major cause of liver disease, affecting over 2% of the world’s population. The HCV envelope glycoproteins E1 and E2 mediate viral entry, with E2 being the main target of neutralizing antibody responses. Structural investigations of E2 have produced templates for vaccine design, including the conserved CD81 receptor-binding site (CD81bs) that is a key target of broadly neutralizing antibodies (bNAbs). Unfortunately, immunization with recombinant E2 and E1E2 rarely elicits sufficient levels of bNAbs for protection. To understand the challenges for eliciting bNAb responses against the CD81bs, we investigated the E2 CD81bs by electron microscopy (EM), hydrogen–deuterium exchange (HDX), molecular dynamics (MD), and calorimetry. By EM, we observed that HCV1, a bNAb recognizing the N-terminal region of the CD81bs, bound a soluble E2 core construct from multiple angles of approach, suggesting components of the CD81bs are flexible. HDX of multiple E2 constructs consistently indicated the entire CD81bs was flexible relative to the rest of the E2 protein, which was further confirmed by MD simulations. However, E2 has a high melting temperature of 84.8 °C, which is more akin to proteins from thermophilic organisms. Thus, recombinant E2 is a highly stable protein overall, but with an exceptionally flexible CD81bs. Such flexibility may promote induction of nonneutralizing antibodies over bNAbs to E2 CD81bs, underscoring the necessity of rigidifying this antigenic region as a target for rational vaccine design.


2010 ◽  
Vol 84 (11) ◽  
pp. 5751-5763 ◽  
Author(s):  
Dorothea Bankwitz ◽  
Eike Steinmann ◽  
Julia Bitzegeio ◽  
Sandra Ciesek ◽  
Martina Friesland ◽  
...  

ABSTRACT The variability of the hepatitis C virus (HCV), which likely contributes to immune escape, is most pronounced in hypervariable region 1 (HVR1) of viral envelope protein 2. This domain is the target for neutralizing antibodies, and its deletion attenuates replication in vivo. Here we characterized the relevance of HVR1 for virus replication in vitro using cell culture-derived HCV. We show that HVR1 is dispensable for RNA replication. However, viruses lacking HVR1 (ΔHVR1) are less infectious, and separation by density gradients revealed that the population of ΔHVR1 virions comprises fewer particles with low density. Strikingly, ΔHVR1 particles with intermediate density (1.12 g/ml) are as infectious as wild-type virions, while those with low density (1.02 to 1.08 g/ml) are poorly infectious, despite quantities of RNA and core similar to those in wild-type particles. Moreover, ΔHVR1 particles exhibited impaired fusion, a defect that was partially restored by an E1 mutation (I347L), which also rescues infectivity and which was selected during long-term culture. Finally, ΔHVR1 particles were no longer neutralized by SR-B1-specific immunoglobulins but were more prone to neutralization and precipitation by soluble CD81, E2-specific monoclonal antibodies, and patient sera. These results suggest that HVR1 influences the biophysical properties of released viruses and that this domain is particularly important for infectivity of low-density particles. Moreover, they indicate that HVR1 obstructs the viral CD81 binding site and conserved neutralizing epitopes. These functions likely optimize virus replication, facilitate immune escape, and thus foster establishment and maintenance of a chronic infection.


Sign in / Sign up

Export Citation Format

Share Document