scholarly journals Drought-induced Suppression of Female Fecundity in a Capital Breeder

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Charles F. Smith ◽  
Gordon W. Schuett ◽  
Randall S. Reiserer ◽  
Catherine E. Dana ◽  
Michael L. Collyer ◽  
...  

Abstract Human-induced global climate change is exerting increasingly strong selective pressures on a myriad of fitness traits that affect organisms. These traits, in turn, are influenced by a variety of environmental parameters such as temperature and precipitation, particularly in ectothermic taxa such as amphibians and reptiles. Over the past several decades, severe and prolonged episodes of drought are becoming commonplace throughout North America. Documentation of responses to this environmental crisis, however, is often incomplete, particularly in cryptic species. Here, we investigated reproduction in a population of pitviper snakes (copperhead, Agkistrodon contortrix), a live-bearing capital breeder. This population experienced a severe drought from 2012 through 2016. We tested whether declines in number of progeny were linked to this drought. Decline in total number offspring was significant, but offspring length and mass were unaffected. Reproductive output was positively impacted by precipitation and negatively impacted by high temperatures. We hypothesized that severe declines of prey species (e.g., cicada, amphibians, and small mammals) reduced energy acquisition during drought, negatively impacting reproductive output of the snakes. Support for this view was found using the periodical cicada (Magicicada spp.) as a proxy for prey availability. Various climate simulations, including our own qualitative analysis, predict that drought events will continue unabated throughout the geographic distribution of copperheads which suggests that long-term monitoring of populations are needed to better understand geographic variation in drought resilience and cascading impacts of drought phenomena on ecosystem function.

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Tomi Afrizal ◽  
Chinnawat Surussavadee

This study evaluates the high-resolution climate simulation system CESM/WRF composed of the global climate model, Community Earth System Model (CESM) version 1, and the mesoscale model, Weather Research and Forecasting Model (WRF), for simulating high-resolution climatological temperature and precipitation in the tropics with complex terrain where temperature and precipitation are strongly inhomogeneous. The CESM/WRF climatological annual and seasonal precipitation and temperature simulations for years 1980–1999 at 10 km resolution for Sumatra and nearby regions are evaluated using observations and the global climate reanalysis ERA-Interim (ERA). CESM/WRF simulations at 10 km resolution are also compared with the downscaled reanalysis ERA/WRF at 10 km resolution. Results show that while temperature and precipitation patterns of the original CESM are very different from observations, those for CESM/WRF agree well with observations. Resolution and accuracies of simulations are significantly improved by dynamically downscaling CESM using WRF. CESM/WRF can simulate locations of very cold temperature at mountain peaks well. The high-resolution climate simulation system CESM/WRF can provide useful climate simulations at high resolution for Sumatra and nearby regions. CESM/WRF-simulated climatological temperature and precipitation at 10 km resolution agree well with ERA/WRF. This suggests the use of CESM/WRF for climate projections at high resolution for Sumatra and nearby regions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong Zhang ◽  
Lu-yu Liu ◽  
Yi Liu ◽  
Man Zhang ◽  
Cheng-bang An

AbstractWithin the mountain altitudinal vegetation belts, the shift of forest tree lines and subalpine steppe belts to high altitudes constitutes an obvious response to global climate change. However, whether or not similar changes occur in steppe belts (low altitude) and nival belts in different areas within mountain systems remain undetermined. It is also unknown if these, responses to climate change are consistent. Here, using Landsat remote sensing images from 1989 to 2015, we obtained the spatial distribution of altitudinal vegetation belts in different periods of the Tianshan Mountains in Northwestern China. We suggest that the responses from different altitudinal vegetation belts to global climate change are different. The changes in the vegetation belts at low altitudes are spatially different. In high-altitude regions (higher than the forest belts), however, the trend of different altitudinal belts is consistent. Specifically, we focused on analyses of the impact of changes in temperature and precipitation on the nival belts, desert steppe belts, and montane steppe belts. The results demonstrated that the temperature in the study area exhibited an increasing trend, and is the main factor of altitudinal vegetation belts change in the Tianshan Mountains. In the context of a significant increase in temperature, the upper limit of the montane steppe in the eastern and central parts will shift to lower altitudes, which may limit the development of local animal husbandry. The montane steppe in the west, however, exhibits the opposite trend, which may augment the carrying capacity of pastures and promote the development of local animal husbandry. The lower limit of the nival belt will further increase in all studied areas, which may lead to an increase in surface runoff in the central and western regions.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 135
Author(s):  
Keng-Lou James Hung ◽  
Sara S. Sandoval ◽  
John S. Ascher ◽  
David A. Holway

Global climate change is causing more frequent and severe droughts, which could have serious repercussions for the maintenance of biodiversity. Here, we compare native bee assemblages collected via bowl traps before and after a severe drought event in 2014 in San Diego, California, and examine the relative magnitude of impacts from drought in fragmented habitat patches versus unfragmented natural reserves. Bee richness and diversity were higher in assemblages surveyed before the drought compared to those surveyed after the drought. However, bees belonging to the Lasioglossum subgenus Dialictus increased in abundance after the drought, driving increased representation by small-bodied, primitively eusocial, and generalist bees in post-drought assemblages. Conversely, among non-Dialictus bees, post-drought years were associated with decreased abundance and reduced representation by eusocial species. Drought effects were consistently greater in reserves, which supported more bee species, than in fragments, suggesting that fragmentation either had redundant impacts with drought, or ameliorated effects of drought by enhancing bees’ access to floral resources in irrigated urban environments. Shifts in assemblage composition associated with drought were three times greater compared to those associated with habitat fragmentation, highlighting the importance of understanding the impacts of large-scale climatic events relative to those associated with land use change.


2012 ◽  
Vol 5 (4) ◽  
pp. 3771-3851 ◽  
Author(s):  
V. Masson ◽  
P. Le Moigne ◽  
E. Martin ◽  
S. Faroux ◽  
A. Alias ◽  
...  

Abstract. SURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surface: nature, town, inland water and ocean. It can be run either coupled or in offline mode. It is mostly based on pre-existing, well validated scientific models. It can be used in offline mode (from point scale to global runs) or fully coupled with an atmospheric model. SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. It also includes a data assimilation module. The main principles of the organization of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally the main applications of the code are summarized. The current applications are extremely diverse, ranging from surface monitoring and hydrology to numerical weather prediction and global climate simulations. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage.


2021 ◽  
Vol 13 (2) ◽  
pp. 187
Author(s):  
Rui Sun ◽  
Shaohui Chen ◽  
Hongbo Su

As an important part of a terrestrial ecosystem, vegetation plays an important role in the global carbon-water cycle and energy flow. Based on the Global Inventory Monitoring and Modeling System (GIMMS) third generation of Normalized Difference Vegetation Index (NDVI3g), meteorological station data, climate reanalysis data, and land cover data, this study analyzed the climate dynamics of the spatiotemporal variations of vegetation NDVI in northern China from 1982 to 2015. The results showed that growth season NDVI (NDVIgs) increased significantly at 0.006/10a (p < 0.01) in 1982–2015 on the regional scale. The period from 1982 to 2015 was divided into three periods: the NDVIgs increased by 0.026/10a (p < 0.01) in 1982–1990, decreased by −0.002/10a (p > 0.1) in 1990–2006, and then increased by 0.021/10a (p < 0.01) during 2006–2015. On the pixel scale, the increases in NDVIgs during 1982–2015, 1982–1990, 1990–2006, and 2006–2015 accounted for 74.64%, 85.34%, 48.14%, and 68.78% of the total area, respectively. In general, the dominant climate drivers of vegetation growth had gradually switched from solar radiation, temperature, and precipitation (1982–1990) to precipitation and temperature (1990–2015). For woodland, high coverage grassland, medium coverage grassland, low coverage grassland, the dominant climate drivers had changed from temperature and solar radiation, solar radiation and precipitation, precipitation and solar radiation, solar radiation to precipitation and solar radiation, precipitation, precipitation and temperature, temperature and precipitation. The areas controlled by precipitation increased significantly, mainly distributed in arid, sub-arid, and sub-humid areas. The dominant climate drivers for vegetation growth in the plateau climate zone or high-altitude area changed from solar radiation to temperature and precipitation, and then to temperature, while in cold temperate zone, changed from temperature to solar radiation. These results are helpful to understand the climate dynamics of vegetation growth, and have important guiding significance for vegetation protection and restoration in the context of global climate change.


2018 ◽  
Vol 22 (6) ◽  
pp. 3175-3196 ◽  
Author(s):  
Mathieu Vrac

Abstract. Climate simulations often suffer from statistical biases with respect to observations or reanalyses. It is therefore common to correct (or adjust) those simulations before using them as inputs into impact models. However, most bias correction (BC) methods are univariate and so do not account for the statistical dependences linking the different locations and/or physical variables of interest. In addition, they are often deterministic, and stochasticity is frequently needed to investigate climate uncertainty and to add constrained randomness to climate simulations that do not possess a realistic variability. This study presents a multivariate method of rank resampling for distributions and dependences (R2D2) bias correction allowing one to adjust not only the univariate distributions but also their inter-variable and inter-site dependence structures. Moreover, the proposed R2D2 method provides some stochasticity since it can generate as many multivariate corrected outputs as the number of statistical dimensions (i.e., number of grid cell  ×  number of climate variables) of the simulations to be corrected. It is based on an assumption of stability in time of the dependence structure – making it possible to deal with a high number of statistical dimensions – that lets the climate model drive the temporal properties and their changes in time. R2D2 is applied on temperature and precipitation reanalysis time series with respect to high-resolution reference data over the southeast of France (1506 grid cell). Bivariate, 1506-dimensional and 3012-dimensional versions of R2D2 are tested over a historical period and compared to a univariate BC. How the different BC methods behave in a climate change context is also illustrated with an application to regional climate simulations over the 2071–2100 period. The results indicate that the 1d-BC basically reproduces the climate model multivariate properties, 2d-R2D2 is only satisfying in the inter-variable context, 1506d-R2D2 strongly improves inter-site properties and 3012d-R2D2 is able to account for both. Applications of the proposed R2D2 method to various climate datasets are relevant for many impact studies. The perspectives of improvements are numerous, such as introducing stochasticity in the dependence itself, questioning its stability assumption, and accounting for temporal properties adjustment while including more physics in the adjustment procedures.


2017 ◽  
Vol 56 (10) ◽  
pp. 2767-2787 ◽  
Author(s):  
Hussein Wazneh ◽  
M. Altaf Arain ◽  
Paulin Coulibaly

AbstractSpatial and temporal trends in historical temperature and precipitation extreme events were evaluated for southern Ontario, Canada. A number of climate indices were computed using observed and regional and global climate datasets for the area of study over the 1951–2013 period. A decrease in the frequency of cold temperature extremes and an increase in the frequency of warm temperature extremes was observed in the region. Overall, the numbers of extremely cold days decreased and hot nights increased. Nighttime warming was greater than daytime warming. The annual total precipitation and the frequency of extreme precipitation also increased. Spatially, for the precipitation indices, no significant trends were observed for annual total precipitation and extremely wet days in the southwest and the central part of Ontario. For temperature indices, cool days and warm night have significant trends in more than 90% of the study area. In general, the spatial variability of precipitation indices is much higher than that of temperature indices. In terms of comparisons between observed and simulated data, results showed large differences for both temperature and precipitation indices. For this region, the regional climate model was able to reproduce historical observed trends in climate indices very well as compared with global climate models. The statistical bias-correction method generally improved the ability of the global climate models to accurately simulate observed trends in climate indices.


Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Jack Lee

An ensemble of climate simulations identifies factors that drove long-term trends of a prehistoric greenhouse climate.


2021 ◽  
Author(s):  
Paul L. Leshota ◽  
Ericka S. Dunbar ◽  
Musa W. Dube ◽  
Malebogo Kgalemang

Climate change and its global impact on all people, especially the marginalized communities, is widely recognized as the biggest crisis of our time. It is a context that invites all subjects and disciplines to bring their resources in diagnosing the problem and seeking the healing of the Earth. The African continent, especially its women, constitute the subalterns of global climate crisis. Can they speak? If they speak, can they be heard? Both the Earth and the Africa have been identified with the adjective “Mother.” This gender identity tells tales in patriarchal and imperial worlds that use the female gender to signal legitimation of oppression and exploitation. In this volume, African women theologians and their female-identifying colleagues, struggle with reading and interpreting religious texts in the context of environmental crisis that are threatening life on Earth. The chapters interrogate how biblical texts and African cultural resources imagine the Earth and our relationship with the Earth: Do these texts offer readers windows of hope for re-imagining liberating relationship with the Earth? How do they intersect with gender, race, empire, ethnicity, sexuality among others? Beginning with Genesis, journeying through Exodus, Ruth, Ecclesiastes and the Gospel of John, the authors seek to read in solidarity with the Earth, for the healing of the whole Earth community.


Sign in / Sign up

Export Citation Format

Share Document