scholarly journals Asian and African lineage Zika viruses show differential replication and innate immune responses in human dendritic cells and macrophages

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Pamela Österlund ◽  
Miao Jiang ◽  
Veera Westenius ◽  
Suvi Kuivanen ◽  
Riia Järvi ◽  
...  

Abstract Zika virus (ZIKV) infections in humans are considered to be mild or subclinical. However, during the recent epidemics in the Pacific Islands and the Americas, the infection was associated with Quillain-Barré syndrome and congenital infections with fetal brain abnormalities, including microcephaly. Thus, more detailed understanding of ZIKV-host cell interactions and regulation of innate immune responses by strains of differential evolutionary origin is required. Here, we characterized the infection and immune responses triggered by two epidemic Asian/American lineage viruses, including an isolate from fetal brains, and a historical, low passage 1947 African lineage virus in human monocyte-derived dendritic cells (DCs) and macrophages. The epidemic Asian/American ZIKV replicated well and induced relatively good antiviral responses in human DCs whereas the African strain replicated less efficiently and induced weaker immune responses. In macrophages both the African and Asian strains showed limited replication and relatively weak cytokine gene expression. Interestingly, in macrophages we observed host protein degradation, especially IRF3 and STAT2, at early phases of infection with both lineage viruses, suggesting an early proteasomal activation in phagocytic cells. Our data indicates that ZIKV evolution has led to significant phenotypic differences in the replication characteristics leading to differential regulation of host innate immune responses.

2005 ◽  
Vol 79 (21) ◽  
pp. 13800-13805 ◽  
Author(s):  
Thedi Ziegler ◽  
Sampsa Matikainen ◽  
Esa Rönkkö ◽  
Pamela Österlund ◽  
Maarit Sillanpää ◽  
...  

ABSTRACT Activation of host innate immune responses was studied in severe acute respiratory syndrome coronavirus (SCV)-infected human A549 lung epithelial cells, macrophages, and dendritic cells (DCs). In all cell types, SCV-specific subgenomic mRNAs were seen, whereas no expression of SCV proteins was found. No induction of cytokine genes (alpha interferon [IFN-α], IFN-β, interleukin-28A/B [IL-28A/B], IL-29, tumor necrosis factor alpha, CCL5, or CXCL10) or IFN-α/β-induced MxA gene was seen in SCV-infected A549 cells, macrophages, or DCs. SCV also failed to induce DC maturation (CD86 expression) or enhance major histocompatibility complex class II expression. Our data strongly suggest that SCV fails to activate host cell cytokine gene expression in human macrophages and DCs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Melanie R. Neeland ◽  
Samantha Bannister ◽  
Vanessa Clifford ◽  
Kate Dohle ◽  
Kim Mulholland ◽  
...  

AbstractChildren have mild severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) confirmed disease (COVID-19) compared to adults and the immunological mechanisms underlying this difference remain unclear. Here, we report acute and convalescent innate immune responses in 48 children and 70 adults infected with, or exposed to, SARS-CoV-2. We find clinically mild SARS-CoV-2 infection in children is characterised by reduced circulating subsets of monocytes (classical, intermediate, non-classical), dendritic cells and natural killer cells during the acute phase. In contrast, SARS-CoV-2-infected adults show reduced proportions of non-classical monocytes only. We also observe increased proportions of CD63+ activated neutrophils during the acute phase to SARS-CoV-2 in infected children. Children and adults exposed to SARS-CoV-2 but negative on PCR testing display increased proportions of low-density neutrophils that we observe up to 7 weeks post exposure. This study characterises the innate immune response during SARS-CoV-2 infection and household exposure in children.


Viruses ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 708 ◽  
Author(s):  
Aitor Nogales ◽  
Luis Martinez-Sobrido ◽  
David Topham ◽  
Marta DeDiego

Influenza A viruses (IAV) can infect a broad range of animal hosts, including humans. In humans, IAV causes seasonal annual epidemics and occasional pandemics, representing a serious public health and economic problem, which is most effectively prevented through vaccination. The defense mechanisms that the host innate immune system provides restrict IAV replication and infection. Consequently, to successfully replicate in interferon (IFN)-competent systems, IAV has to counteract host antiviral activities, mainly the production of IFN and the activities of IFN-induced host proteins that inhibit virus replication. The IAV multifunctional proteins PA-X and NS1 are virulence factors that modulate the innate immune response and virus pathogenicity. Notably, these two viral proteins have synergistic effects in the inhibition of host protein synthesis in infected cells, although using different mechanisms of action. Moreover, the control of innate immune responses by the IAV NS1 and PA-X proteins is subject to a balance that can determine virus pathogenesis and fitness, and recent evidence shows co-evolution of these proteins in seasonal viruses, indicating that they should be monitored for enhanced virulence. Importantly, inhibition of host gene expression by the influenza NS1 and/or PA-X proteins could be explored to develop improved live-attenuated influenza vaccines (LAIV) by modulating the ability of the virus to counteract antiviral host responses. Likewise, both viral proteins represent a reasonable target for the development of new antivirals for the control of IAV infections. In this review, we summarize the role of IAV NS1 and PA-X in controlling the antiviral response during viral infection.


2015 ◽  
Vol 96 (2) ◽  
pp. 294-310 ◽  
Author(s):  
Trina Das ◽  
Jean Jacques Hoarau ◽  
Marie Christine Jaffar Bandjee ◽  
Marianne Maquart ◽  
Philippe Gasque

2021 ◽  
Vol 498 ◽  
pp. 113147
Author(s):  
Yi Wen ◽  
Xiaoli Wang ◽  
Suntara Cahya ◽  
Paul Anderson ◽  
Candyd Velasquez ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0121574 ◽  
Author(s):  
Xueqi Qu ◽  
Maren Pröll ◽  
Christiane Neuhoff ◽  
Rui Zhang ◽  
Mehmet Ulas Cinar ◽  
...  

2014 ◽  
Vol 21 (3) ◽  
pp. 242-254 ◽  
Author(s):  
Xueqi Qu ◽  
Mehmet U Cinar ◽  
Huitao Fan ◽  
Maren Pröll ◽  
Dawit Tesfaye ◽  
...  

Diabetes ◽  
2010 ◽  
Vol 59 (5) ◽  
pp. 1182-1191 ◽  
Author(s):  
B. M. Schulte ◽  
M. Kramer ◽  
M. Ansems ◽  
K. H. W. Lanke ◽  
N. van Doremalen ◽  
...  

2021 ◽  
Vol 22 (17) ◽  
pp. 9228
Author(s):  
Guoshuai Cai ◽  
Mulong Du ◽  
Yohan Bossé ◽  
Helmut Albrecht ◽  
Fei Qin ◽  
...  

The current spreading coronavirus SARS-CoV-2 is highly infectious and pathogenic. In this study, we screened the gene expression of three host receptors (ACE2, DC-SIGN and L-SIGN) of SARS coronaviruses and dendritic cells (DCs) status in bulk and single cell transcriptomic datasets of upper airway, lung or blood of COVID-19 patients and healthy controls. In COVID-19 patients, DC-SIGN gene expression was interestingly decreased in lung DCs but increased in blood DCs. Within DCs, conventional DCs (cDCs) were depleted while plasmacytoid DCs (pDCs) were augmented in the lungs of mild COVID-19. In severe cases, we identified augmented types of immature DCs (CD22+ or ANXA1+ DCs) with MHCII downregulation. In this study, our observation indicates that DCs in severe cases stimulate innate immune responses but fail to specifically present SARS-CoV-2. It provides insights into the profound modulation of DC function in severe COVID-19.


Sign in / Sign up

Export Citation Format

Share Document