scholarly journals Damage analysis of a perfect broadband absorber by a femtosecond laser

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahasanul Haque ◽  
Monir Morshed ◽  
Ziyuan Li ◽  
Li Li ◽  
Kaushal Vora ◽  
...  

Abstract Plasmonic metamaterial absorbers are particularly important in different applications such as photodetectors, microbolometers and solar cells. In this paper, we propose a tungsten boride (WB, a refractory ceramic) based broadband metamaterial absorber whose optical properties is numerically analyzed and experimentally characterized. We have also analyzed the damage characteristics of this absorber using a femtosecond laser and compared with an ordinary Au metamaterial absorber. We observe that WB has almost the double absorption bandwidth with absorption more than 90% over the spectral range of 950 to 1400 nm when compared with the Au counterpart. Furthermore, we show that Au metamaterial is damaged at the power of around 36.4 mW whereas WB metamaterial is not damaged at that power (WB has high Tammann temperature than Au)-however the atom of WB material was knocked off by the bombardment of a femtosecond laser.

2021 ◽  
pp. 2150291
Author(s):  
Fanyi Liu ◽  
Limei Qi

A broadband absorber composed of silicon rods and nickel ground is proposed in the visible band. The absorption above 98% can be obtained in the frequency range of [Formula: see text] THz with strong polarization independence and angle independence. The impedance matching theory and field distributions of eigenmodes are used to analyze the physical mechanism of the broadband absorption. The absorber has a simple structure with only two layers, which is composed of silicon and nickel. Nickel is a non-precious metal, which is cheaper than the precious metal materials commonly used in metamaterial absorber. The proposed cost-effective absorber with simple structure has great potential in the application of solar cells.


2021 ◽  
Vol 27 (5) ◽  
pp. 1-16
Author(s):  
Hema Omer Ali ◽  
Asaad M. Al-Hindawi

In this paper, a design of the broadband thin metamaterial absorber (MMA) is presented. Compared with the previously reported metamaterial absorbers, the proposed structure provides a wide bandwidth with a compatible overall size. The designed absorber consists of a combination of octagon disk and split octagon resonator to provide a wide bandwidth over the Ku and K bands' frequency range. Cheap FR-4 material is chosen to be a substate of the proposed absorber with 1.6 thicknesses and 6.5×6.5 overall unit cell size. CST Studio Suite was used for the simulation of the proposed absorber. The proposed absorber provides a wide absorption bandwidth of 14.4 GHz over a frequency range of 12.8-27.5 GHz with more than %90 absorptions. To analyze the proposed design, electromagnetic parameters such as permittivity  permeability  reflective index , and impedance  were extracted and presented. The structure's working principle is analyzed and illustrated through input impedance, surface current, and the electric field of the structure. The proposed absorber compared with the recent MMA presented in the literature. The obtained results indicated that the proposed absorber has the widest bandwidth with the highest absorption value. According to these results, the proposed metamaterials absorber is a good candidate for RADAR applications.


2019 ◽  
Vol 6 ◽  
pp. 1 ◽  
Author(s):  
Ke Chen ◽  
Xinyao Luo ◽  
Guowen Ding ◽  
Junming Zhao ◽  
Yijun Feng ◽  
...  

Narrow absorption bandwidth has been a fundamental drawback hindering many metamaterial absorbers for practical applications. In this paper, by loading lumped resistors, we have successfully designed a microwave metamaterial absorber with multioctave wide absorption bandwidth covering the entire X- and Ku-bands, while keeping the thickness of the absorber less than 1/10 of the working wavelength. The polarization-insensitive absorber shows a good angular stability for both transverse electric (TE) and transverse magnetic (TM) incidences. Prototype has been fabricated and measured to validate the design principle and the simulated results, and good agreements are observed between simulated and measured results. The proposed metamaterial absorber offers an efficient way to realize broadband microwave absorption with stable angular performance, which may find potential uses in many applications, for example, electromagnetic compatibility.


2017 ◽  
Vol 9 (5) ◽  
pp. 05035-1-05035-6 ◽  
Author(s):  
G. I. Kopach ◽  
◽  
R. P. Mygushchenko ◽  
G. S. Khrypunov ◽  
A. I. Dobrozhan ◽  
...  

2021 ◽  
Author(s):  
Xianhao Zhao ◽  
Tianyu Tang ◽  
Quan Xie ◽  
like gao ◽  
Limin Lu ◽  
...  

The cesium lead halide perovskites are regarded as effective candidates for light-absorbing materials in solar cells, which have shown excellent performances in experiments such as promising energy conversion efficiency. In...


2021 ◽  
Vol 11 (4) ◽  
pp. 1657
Author(s):  
Petros-Panagis Filippatos ◽  
Nikolaos Kelaidis ◽  
Maria Vasilopoulou ◽  
Dimitris Davazoglou ◽  
Alexander Chroneos

Titania (TiO2) is a key material used as an electron transport in dye-sensitized and halide perovskite solar cells due to its intrinsic n-type conductivity, visible transparency, low-toxicity, and abundance. Moreover, it exhibits pronounced photocatalytic properties in the ultra-violet part of the solar spectrum. However, its wide bandgap (around 3.2 eV) reduces its photocatalytic activity in the visible wavelengths’ region and electron transport ability. One of the most efficient strategies to simultaneously decrease its bandgap value and increase its n-type conductivity is doping with appropriate elements. Here, we have investigated using the density functional theory (DFT), as well as the influence of chromium (Cr), molybdenum (Mo), and tungsten (W) doping on the structural, electronic, and optical properties of TiO2. We find that doping with group 6 elements positively impacts the above-mentioned properties and should be considered an appropriate method for photocatalystic applications. In addition to the pronounced reduction in the bandgap values, we also predict the formation of energy states inside the forbidden gap, in all the cases. These states are highly desirable for photocatalytic applications as they induce low energy transitions, thus increasing the oxide’s absorption within the visible. Still, they can be detrimental to solar cells’ performance, as they constitute trap sites for photogenerated charge carriers.


Sign in / Sign up

Export Citation Format

Share Document