scholarly journals A Ultra-broadband Thin Metamaterial Absorber for Ku and K Bands Applications

2021 ◽  
Vol 27 (5) ◽  
pp. 1-16
Author(s):  
Hema Omer Ali ◽  
Asaad M. Al-Hindawi

In this paper, a design of the broadband thin metamaterial absorber (MMA) is presented. Compared with the previously reported metamaterial absorbers, the proposed structure provides a wide bandwidth with a compatible overall size. The designed absorber consists of a combination of octagon disk and split octagon resonator to provide a wide bandwidth over the Ku and K bands' frequency range. Cheap FR-4 material is chosen to be a substate of the proposed absorber with 1.6 thicknesses and 6.5×6.5 overall unit cell size. CST Studio Suite was used for the simulation of the proposed absorber. The proposed absorber provides a wide absorption bandwidth of 14.4 GHz over a frequency range of 12.8-27.5 GHz with more than %90 absorptions. To analyze the proposed design, electromagnetic parameters such as permittivity  permeability  reflective index , and impedance  were extracted and presented. The structure's working principle is analyzed and illustrated through input impedance, surface current, and the electric field of the structure. The proposed absorber compared with the recent MMA presented in the literature. The obtained results indicated that the proposed absorber has the widest bandwidth with the highest absorption value. According to these results, the proposed metamaterials absorber is a good candidate for RADAR applications.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahasanul Haque ◽  
Monir Morshed ◽  
Ziyuan Li ◽  
Li Li ◽  
Kaushal Vora ◽  
...  

Abstract Plasmonic metamaterial absorbers are particularly important in different applications such as photodetectors, microbolometers and solar cells. In this paper, we propose a tungsten boride (WB, a refractory ceramic) based broadband metamaterial absorber whose optical properties is numerically analyzed and experimentally characterized. We have also analyzed the damage characteristics of this absorber using a femtosecond laser and compared with an ordinary Au metamaterial absorber. We observe that WB has almost the double absorption bandwidth with absorption more than 90% over the spectral range of 950 to 1400 nm when compared with the Au counterpart. Furthermore, we show that Au metamaterial is damaged at the power of around 36.4 mW whereas WB metamaterial is not damaged at that power (WB has high Tammann temperature than Au)-however the atom of WB material was knocked off by the bombardment of a femtosecond laser.


2019 ◽  
Vol 6 ◽  
pp. 1 ◽  
Author(s):  
Ke Chen ◽  
Xinyao Luo ◽  
Guowen Ding ◽  
Junming Zhao ◽  
Yijun Feng ◽  
...  

Narrow absorption bandwidth has been a fundamental drawback hindering many metamaterial absorbers for practical applications. In this paper, by loading lumped resistors, we have successfully designed a microwave metamaterial absorber with multioctave wide absorption bandwidth covering the entire X- and Ku-bands, while keeping the thickness of the absorber less than 1/10 of the working wavelength. The polarization-insensitive absorber shows a good angular stability for both transverse electric (TE) and transverse magnetic (TM) incidences. Prototype has been fabricated and measured to validate the design principle and the simulated results, and good agreements are observed between simulated and measured results. The proposed metamaterial absorber offers an efficient way to realize broadband microwave absorption with stable angular performance, which may find potential uses in many applications, for example, electromagnetic compatibility.


2020 ◽  
Vol 91 (3) ◽  
pp. 30901
Author(s):  
Yibo Tang ◽  
Longhui He ◽  
Jianming Xu ◽  
Hailang He ◽  
Yuhan Li ◽  
...  

A dual-band microwave metamaterial absorber with single-peak regulation and wide-angle absorption has been proposed and illustrated. The designed metamaterial absorber is consisted of hollow-cross resonators, solid-cross resonators, dielectric substrate and metallic background plane. Strong absorption peak coefficients of 99.92% and 99.55% are achieved at 8.42 and 11.31 GHz, respectively, which is basically consistent with the experimental results. Surface current density and changing material properties are employed to illustrate the absorptive mechanism. More importantly, the proposed dual-band metamaterial absorber has the adjustable property of single absorption peak and could operate well at wide incidence angles for both transverse electric (TE) and transverse magnetic (TM) waves. Research results could provide and enrich instructive guidances for realizing a single-peak-regulation and wide-angle dual-band metamaterial absorber.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 477
Author(s):  
Warsha Balani ◽  
Mrinal Sarvagya ◽  
Ajit Samasgikar ◽  
Tanweer Ali ◽  
Pradeep Kumar

In this article, a compact concentric structured monopole patch antenna for super wideband (SWB) application is proposed and investigated. The essential characteristics of the designed antenna are: (i) to attain super-wide bandwidth characteristics, the proposed antenna is emerged from a traditional circular monopole antenna and has obtained an impedance bandwidth of 38.9:1 (ii) another important characteristic of the presented antenna is its larger bandwidth dimension ratio (BDR) value of 6596 that is accomplished by augmenting the electrical length of the patch. The electrical dimension of the proposed antenna is 0.18λ×0.16λ (λ corresponds to the lower end operating frequency). The designed antenna achieves a frequency range from 1.22 to 47.5 GHz with a fractional bandwidth of 190% and exhibiting S11 < −10 dB in simulation. For validating the simulated outcomes, the antenna model is fabricated and measured. Good conformity is established between measured and simulated results. Measured frequency ranges from 1.25 to 40 GHz with a fractional bandwidth of 188%, BDR of 6523 and S11 < −10 dB. Even though the presented antenna operates properly over the frequency range from 1.22 to 47.5 GHz, the results of the experiment are measured till 40 GHz because of the high-frequency constraint of the existing Vector Network Analyzer (VNA). The designed SWB antenna has the benefit of good gain, concise dimension, and wide bandwidth above the formerly reported antenna structures. Simulated gain varies from 0.5 to 10.3 dBi and measured gain varies from 0.2 to 9.7 dBi. Frequency domain, as well as time-domain characterization, has been realized to guide the relevance of the proposed antenna in SWB wireless applications. Furthermore, an equivalent circuit model of the proposed antenna is developed, and the response of the circuit is obtained. The presented antenna can be employed in L, S, C, X, Ka, K, Ku, and Q band wireless communication systems.


Author(s):  
Sahib Singh Chawla

The laminar boundary layer on a magnetized plate, when the magnetic field oscillates in magnitude about a constant non-zero mean, is analysed. For low-frequency fluctuations the solution is obtained by a series expansion in terms of a frequency parameter, while for high frequencies the flow pattern is of the ‘skin-wave’ type unaffected by the mean flow. In the low-frequency range, the phase lead and the amplitude of the skin-friction oscillations increase at first and then decrease to their respective ‘skin-wave’ values. On the other hand the phase angle of the surface current decreases from 90° to 45° and its amplitude increases with frequency.


2021 ◽  
Vol 36 (6) ◽  
pp. 697-706
Author(s):  
Han Wu ◽  
Shijun Ji ◽  
Ji Zhao ◽  
Zhiyou Luo ◽  
Handa Dai

A facile design of a novel triple-band electromagnetic metamaterial absorber (MMA) with polarization insensitive property is proposed in this paper. Each unit of the MMA consists of upper copper resonator and bottom copper plate with middle dielectric FR-4 between them. The MMA performs three absorption peaks at 16.919 GHz, 21.084 GHz and 25.266 GHz with absorption rates 99.90%, 97.76% and 99.18%, respectively. The influence of the main structural parameters on the frequencies and absorption rates is analyzed. The absorption mechanism of the absorber is explained by electric field, magnetic field and surface current distributions, which is supported by the electromagnetic parameters, affected with magnetic resonance. The polarization-insensitivity of TE wave is verified by observing the effects of the polarization angle change from 0-90º. The MMA can be applied in radiation, spectrum imaging detector, electromagnetic wave modulator, and so on.


2021 ◽  
Author(s):  
Muhammad Fahim Zafar ◽  
Usman Masud

Abstract Developing a highly efficient and multiple-bands metamaterial absorber is a hot issue in recent era. In this paper, A multiple-bands metamaterial absorber has been presented which is based in X, Ku and K-band. Firstly, we have designed two single layer basic unit cell of X-shape and cross-shape, then they are arranged in the multi-layers structure form for the purpose of obtaining multiple- bands and wide band absorption. The proposed absorber is able to work in multiple bands because it has six peaks in the frequency range of 8–24 GHz with having near perfect absorption. Moreover, the sixth peak has a wideband absorption which is 2.93 GHz. Furthermore, the proposed absorber is also tested for polarization insensitivity and also for oblique incidence. Absorption was found polarization insensitive with almost perfect absorption.


Author(s):  
Dr.M.D. Javeed Ahammed ◽  
Dr.G. Srinivasa Rao

In this paper a present time developing application is used that is a UAV Antenna in aerospace technology. These antennas play a vital role in this WIMAX technology. A patch antenna is designed such that all the dimensions should be shrinked yet efficient in radiation in comb shape and this proposed antenna is used at 4.2GHz frequency range. A CST tool is used for designing and simulating our antenna all the dimensions taken for proposed antenna are comparatively less when compared to conventional models. Low return loss, gain, bandwidth and VSWR are optimized by using this design the efficiency is also enhanced by 95% which makes our antenna suitable to the UAV WIMAX applications. Surface current is also one of the major parameter which is reduced by our proposed model.


Author(s):  
Э.П. Шурина ◽  
Д.В. Добролюбова ◽  
Е.И. Штанько

При решении задач электромагнетизма в широком частотном диапазоне в областях с тонкими пластинами, оболочками и экранами численными методами возникает проблема резкого роста сеточной дискретизации вблизи внутренних структур с разномасштабными габаритными размерами. В работе предложена модификация вариационной постановки векторного метода конечных элементов, основанная на снижении размерности модели в окрестности тонких включений, которая позволяет преодолеть эту проблему за счет специфического учета таких структур на уровне вариационной постановки. Так как редуцирование модели обычно приводит к появлению ограничений на область ее применимости, выполнено исследование диапазона допустимых частот, контрастности электрофизических характеристик матрицы и включений, геометрических особенностей внутренней структуры, для которых предложенная модель позволяет получить корректные с точки зрения физики результаты. Purpose. In this paper, we propose a reduced variational formulation for the Helmholtz equation for the electric field, in which thin highly conductive objects are approximated by surfaces with the equivalent surface current density. We conduct a study aimed at defining the range of application for the reduced variational formulation, focusing on highly contrasting thin objects of various geometrical shape and arrangement in a wide frequency range. Methodology. The modelling is performed on unstructured tetrahedral meshes. Since the reduced variational formulation treats thin highly conductive objects as surfaces, no volume mesh is constructed inside of them.We compare the results obtained by the vector FEM using the proposed variational formulation with the results obtained using standard formulation. Findings. Due to the fact that the proposed variational formulation does not require volume meshing of the thin objects, its computational cost is significantly lower. However, the reduced formulation yields correct results in a restricted frequency range. It also imposes some limitations on the minimal contrast and maximal thickness of the thin highly conductive objects. Originality/value. The proposed reduced variational formulation can be applied to simulate the time-harmonic electric field in the media with thin highly conductive inclusions of either regular or chaotic arrangement, as well as thin shielding plates or casings of various geometrical forms.


Sign in / Sign up

Export Citation Format

Share Document