scholarly journals Broadband microwave metamaterial absorber with lumped resistor loading

2019 ◽  
Vol 6 ◽  
pp. 1 ◽  
Author(s):  
Ke Chen ◽  
Xinyao Luo ◽  
Guowen Ding ◽  
Junming Zhao ◽  
Yijun Feng ◽  
...  

Narrow absorption bandwidth has been a fundamental drawback hindering many metamaterial absorbers for practical applications. In this paper, by loading lumped resistors, we have successfully designed a microwave metamaterial absorber with multioctave wide absorption bandwidth covering the entire X- and Ku-bands, while keeping the thickness of the absorber less than 1/10 of the working wavelength. The polarization-insensitive absorber shows a good angular stability for both transverse electric (TE) and transverse magnetic (TM) incidences. Prototype has been fabricated and measured to validate the design principle and the simulated results, and good agreements are observed between simulated and measured results. The proposed metamaterial absorber offers an efficient way to realize broadband microwave absorption with stable angular performance, which may find potential uses in many applications, for example, electromagnetic compatibility.

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7339
Author(s):  
Feng Tian ◽  
Xia Ma ◽  
Han Hao ◽  
Xuewen Li ◽  
Jingdao Fan ◽  
...  

Conventional metamaterial absorbers eliminate the transmitted electromagnetic wave by attaching the metal plate with the unidirectional absorption performance; these absorbers limit the practical applications to a large extent. In this paper, we present a broadband bi-directional metamaterial absorber by etching chip resistors on the resonators for expanding the bandwidth, and two orthogonal I-shaped structures are pasted on the both sides of the ultra-thin substrate (FR-4) instead of the metal plate for enhancing absorptance of the absorber. Simulated results show that absorptance of the designed absorber is larger than 0.9 in 1.43–2.51 GHz along the forward and backward directions under both TE and TM polarizations. Microwave experiments in the chamber are performed to verify the simulations, and the experimental results exhibit the excellent agreement with the simulations. Additionally, two I-shaped structures are orthogonally pasted on an ultrathin substrate, leading to the impedance-matching of both forward and backward directions, and the absorptance can be tailed dynamically via the middle layer of the substrate. The physics of the absorption are visualized by using a transmission line based on equivalent circuits. We claim that the designed bi-directional metamaterial absorber can be a good candidate for electromagnetic stealth and energy harvesting.


2020 ◽  
Vol 91 (3) ◽  
pp. 30901
Author(s):  
Yibo Tang ◽  
Longhui He ◽  
Jianming Xu ◽  
Hailang He ◽  
Yuhan Li ◽  
...  

A dual-band microwave metamaterial absorber with single-peak regulation and wide-angle absorption has been proposed and illustrated. The designed metamaterial absorber is consisted of hollow-cross resonators, solid-cross resonators, dielectric substrate and metallic background plane. Strong absorption peak coefficients of 99.92% and 99.55% are achieved at 8.42 and 11.31 GHz, respectively, which is basically consistent with the experimental results. Surface current density and changing material properties are employed to illustrate the absorptive mechanism. More importantly, the proposed dual-band metamaterial absorber has the adjustable property of single absorption peak and could operate well at wide incidence angles for both transverse electric (TE) and transverse magnetic (TM) waves. Research results could provide and enrich instructive guidances for realizing a single-peak-regulation and wide-angle dual-band metamaterial absorber.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1954 ◽  
Author(s):  
Can Cao ◽  
Yongzhi Cheng

In this paper, a plasmonic perfect absorber (PPA) based on a silicon nanorod resonator (SNRR) for visible light is proposed and investigated numerically. The proposed PPA is only a two-layer nanostructure consisting of a SNRR periodic array and metal substrate. The perfect absorption mainly originates from excitation of the localized surface plasmon resonance (LSPR) mode in the SNRR structure. The absorption properties of this design can be adjusted by varying the radius (r) and height (h) of the SNRR structure. What is more, the stronger quad-band absorption can be achieved by combing four different radius of the SNRR in one period as a super unit-cell. Numerical simulation indicates that the designed quad-band PPA can achieve the absorbance of 99.99%, 99.8%, 99.8%, and 92.2% at 433.5 THz, 456 THz, 482 THz, and 504.5 THz, respectively. Further simulations show that the proposed PPA is polarization-insensitive for both transverse electric (TE) and transverse magnetic (TM) modes. The proposed PPA can be a desirable candidate for some potential applications in detecting, sensing, and visible spectroscopy.


2019 ◽  
Vol 1 (9) ◽  
pp. 3621-3625 ◽  
Author(s):  
Ben-Xin Wang ◽  
Chao Tang ◽  
Qingshan Niu ◽  
Yuanhao He ◽  
Runye Chen

Broadband metamaterial absorbers are of critical importance in practical applications, but their obtainment approaches are quite complex at present.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahasanul Haque ◽  
Monir Morshed ◽  
Ziyuan Li ◽  
Li Li ◽  
Kaushal Vora ◽  
...  

Abstract Plasmonic metamaterial absorbers are particularly important in different applications such as photodetectors, microbolometers and solar cells. In this paper, we propose a tungsten boride (WB, a refractory ceramic) based broadband metamaterial absorber whose optical properties is numerically analyzed and experimentally characterized. We have also analyzed the damage characteristics of this absorber using a femtosecond laser and compared with an ordinary Au metamaterial absorber. We observe that WB has almost the double absorption bandwidth with absorption more than 90% over the spectral range of 950 to 1400 nm when compared with the Au counterpart. Furthermore, we show that Au metamaterial is damaged at the power of around 36.4 mW whereas WB metamaterial is not damaged at that power (WB has high Tammann temperature than Au)-however the atom of WB material was knocked off by the bombardment of a femtosecond laser.


2016 ◽  
Vol 30 (12) ◽  
pp. 1650072 ◽  
Author(s):  
Hongtao Li ◽  
Bo Wang ◽  
Hao Pei ◽  
Wenhao Shu ◽  
Li Chen ◽  
...  

In this paper, we describe a novel reflective sandwiched three-port grating with two dielectric layers. The two-layer sandwiched grating can separate incident wave into the [Formula: see text] and the 0th-order with high-efficiency beam splitting and good splitting ratios for both transverse electric (TE) and transverse magnetic (TM) polarizations. The grating parameters can be optimized by using rigorous coupled-wave analysis (RCWA) with a special duty cycle of 0.6. With the optimized results, efficiencies more than 32% in the [Formula: see text]st-orders and the 0th-order can be obtained. Furthermore, performance of the incident bandwidth and aspect ratio can be improved. Compared with conventional surface-relief grating, the grating with sandwiched structure is aimed at cleaning and protecting grating surface. The presented reflective two-layer sandwiched three-port grating would be put into practical applications for its beneficial performances.


2021 ◽  
Vol 27 (5) ◽  
pp. 1-16
Author(s):  
Hema Omer Ali ◽  
Asaad M. Al-Hindawi

In this paper, a design of the broadband thin metamaterial absorber (MMA) is presented. Compared with the previously reported metamaterial absorbers, the proposed structure provides a wide bandwidth with a compatible overall size. The designed absorber consists of a combination of octagon disk and split octagon resonator to provide a wide bandwidth over the Ku and K bands' frequency range. Cheap FR-4 material is chosen to be a substate of the proposed absorber with 1.6 thicknesses and 6.5×6.5 overall unit cell size. CST Studio Suite was used for the simulation of the proposed absorber. The proposed absorber provides a wide absorption bandwidth of 14.4 GHz over a frequency range of 12.8-27.5 GHz with more than %90 absorptions. To analyze the proposed design, electromagnetic parameters such as permittivity  permeability  reflective index , and impedance  were extracted and presented. The structure's working principle is analyzed and illustrated through input impedance, surface current, and the electric field of the structure. The proposed absorber compared with the recent MMA presented in the literature. The obtained results indicated that the proposed absorber has the widest bandwidth with the highest absorption value. According to these results, the proposed metamaterials absorber is a good candidate for RADAR applications.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 665
Author(s):  
Riccardo Cacocciola ◽  
Badreddine Ratni ◽  
Nicolas Mielec ◽  
Emmanuel Mimoun ◽  
Shah Nawaz Burokur

A high-index dielectric radome seam is camouflaged with respect to a low-index dielectric radome panel by tuning the seam with carefully engineered metasurfaces. A transmission-line approach is used to model the metasurface-tuned seam and analytically retrieve the corresponding surface impedance, from which the unit-cell design is then tailored. Full-wave simulations and microwave antenna measurements performed on a proof-of-concept prototype validate the undesired scattering suppression effect in the case of normally and obliquely incident transverse electric and transverse magnetic wave illuminations. Robustness of the proposed solution to fabrication tolerances is also reported. The study presents metasurface-tuning as an easily implementable, frequency adjustable, and polarization insensitive solution to reduce the scattering of dielectric mechanical seams and improve the overall transparency performance of radome structures.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 784 ◽  
Author(s):  
Phuc Toan Dang ◽  
Tuan V. Vu ◽  
Jongyoon Kim ◽  
Jimin Park ◽  
Van-Chuc Nguyen ◽  
...  

We present a design of an ultra-broadband metamaterial absorber in the visible and near- infrared regions. The unit cell structure consists of a single layer of metallic truncated-pyramid resonator-dielectric-metal configuration, which results in a high absorption over a broad wavelength range. The absorber exhibits 98% absorption at normal incidence spanning a wideband range of 417–1091 nm, with >99% absorption within 822–1054 nm. The broadband absorption stability maintains 95% at large incident angles up to 40° for the transverse electric (TE)-mode and 20° for the transverse magnetic (TM)-mode. Furthermore, the polarization-insensitive broadband absorption is presented in this paper by analyzing absorption performance with various polarization angles. The proposed absorber can be applied for applications such as solar cells, infrared detection, and communication systems thanks to the convenient and compatible bandwidth for electronic THz sources.


Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 673 ◽  
Author(s):  
Dang ◽  
Le ◽  
Lee ◽  
Nguyen

In this paper, we present a numerical study of a metamaterial absorber that provides polarization-insensitive absorption over a broad bandwidth of operation over the mid-infrared region. The absorber consists of a periodically patterned metal-dielectric-metal structure integrated with an epsilon-near-zero (ENZ) nanolayer into the insulating dielectric gap region. Such an anomalous broadband absorber is achieved thanks to a couple of resonant modes including plasmon and ENZ modes that are excited under mid-IR light illumination. By adding a 0.06-μm-thick ENZ layer between the patterned gold rectangular grating and the SiO2 dielectric layer, the absorber captures >95% light over a 1.5 µm bandwidth centered at a near-8-μm wavelength over a wide range of oblique incidence under transverse-magnetic and -electric polarizations. The designed ENZ-based wideband absorber has potential for many practical applications, including sensing, imaging and solar energy harvesting over a wide frequency regime.


Sign in / Sign up

Export Citation Format

Share Document