scholarly journals Enhanced immobilization of Prussian blue through hydrogel formation by polymerization of acrylic acid for radioactive cesium adsorption

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Daemin Oh ◽  
Bokseong Kim ◽  
Sungwon Kang ◽  
Youngsug Kim ◽  
Sungjong Yoo ◽  
...  

Abstract In this study, a hydrogel impregnated with powder activated carbon (PAC), MAA-PAC, was synthesized through the polymerization of acrylic acid (AA) and PB was immobilized using the carboxyl group of AA. In this process, an adsorbent with an enhancement of PB content and stability of immobilization was developed through the additional supply of Fe3+ ions by the layer by layer (LBL) assembly. XRD, FT-IR, SEM (EDS), TEM (EDS, mapping), and TG analyzes of the LBL and non-LBL groups were performed to confirm the change of PB content in the adsorbent as the LBL assembly was applied. The stability of PB immobilization was confirmed during the washing process after the synthesis of the adsorbent. When the LBL assembly process was applied as a PB immobilization strategy, the PB content in the adsorbent was improved and PB leakage was not observed during the washing process. The maximum adsorption (qm) for cesium in the MAA-PAC-PB LBL group that showed high PB content was 40.03 mg/g, and the adsorption isotherm was more suitable for the Langmuir model than the Freundlich model. The LBL group showed a high removal efficiency of 99.81% and a high DF value (525.88) for radioactive cesium (120 Bq/g). These results demonstrate the potential efficiency of the MAA-PAC-PB LBL group for the decontamination of radioactive cesium-contaminated water systems. Furthermore, it was verified that the LBL group of MAA-PAC-PB could be used as an adsorbent without an additional design of the existing water treatment facility. This can an economical decontamination method for removing radioactive cesium.

2021 ◽  
Vol 43 (12) ◽  
pp. 731-738
Author(s):  
Bok Seong Kim ◽  
Sung Won Kang

Objectives : The purpose of this study was to develop an adsorbent to which Prussian blue (PB) is stably immobilized to remove radioactive cesium (Cs).Methods : Prussian blue-Alginate (PA) bead and Prussian blue-Alginate with Layer-by-layer synthesis (PAL) bead were synthesized by immobilizing PB respectively.Results and Discussion : As a results of XRD and FT-IR analysis, PB was successfuuly immobilized in alginate bead and PA, PAL bead. SEM (EDS) and TG analysis data were confirmed that the PB content of the PAL bead to which the LBL synthesis method was applied was improved by 6.31%. It was confirmed that the Cs adsorption capacity was improved through the LBL assembly process. The maximum adsorption amount (qm) of PA bead was 25.783 mg/g, and PAL bead was mg/g. In addition, as a result of UV-vis analysis of washing water after synthesis of PA bead and PAL bead, it was confirmed that the PB desorption of the PAL bead was lower indicating that the stability was also improved by LBL synthesis.Conclusions : We developed an adsorbent which prussianblue immobilized on alginate bead for selective removal cesium in aqueous solution. PB was immobilized by LBL synthesis method qm of PAL beads was 28.294 mg/g. It was expected to applied effectively and stably to radioactive cesium contaminated water.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1734 ◽  
Author(s):  
Abel Adekanmi Adeyi ◽  
Siti Nurul Ain Md Jamil ◽  
Luqman Chuah Abdullah ◽  
Thomas Shean Yaw Choong ◽  
Kia Li Lau ◽  
...  

The paper evaluates the adsorptive potential of thiourea-modified poly(acrylonitrile-co-acrylic acid), (TA-poly(AN-co-AA)) for the uptake of cationic methylene blue (MB) from aquatic environments via a batch system. TA-poly(AN-co-AA) polymer was synthesized through redox polymerization and modified with thiourea (TA) where thioamide groups were introduced to the surface. Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), CHNS and Zetasizer were used to characterize the physico-chemical and morphological properties of prepared TA-poly(AN-co-AA). Afterwards, it was confirmed that incorporation of thioamide groups was successful. The adsorption kinetics and equilibrium adsorption data were best described, respectively, by a pseudo-second-order model and Freundlich model. Thermodynamic analysis showed the exothermic and spontaneous nature of MB uptake by TA-poly(AN-co-AA). The developed TA-poly(AN-co-AA) polymer demonstrated efficient separation of MB dye from the aqueous solution and maintained maximum adsorption capacity after five regeneration cycles. The findings of this study suggested that synthesized TA-poly(AN-co-AA) can be applied successfully to remove cationic dyes from aquatic environments.


2018 ◽  
Author(s):  
Lincy Tom ◽  
Victoria A. Smolenski ◽  
Jerry P. Jasinski ◽  
M.R. Prathapachandra Kurup

The reaction of p-hydroxybenzaldehyde with an equimolar amount of isonicotinic hydrazide afforded two polymorphic and hydrate forms of p-hydroxybenzaldehyde isonicotinichydrazone (HBIH) by varying the experimental reaction conditions. The compounds are fully characterized by means of single crystal and powder diffraction methods, vibrational spectroscopy (FT-IR and Raman), thermal and elemental analysis. The compound crystallizes in three different forms in two different space groups, P21/c (form PA and PB) and Pbca (PC). The Hirshfeld surface analysis shows the differences in the relative contributions of intermolecular interactions to the total Hirshfeld surface area for the HBIH molecules. The calculated pairwise interaction energies (104-116 kJ/mol) can be related to the stability of the crystals. Energy framework analysis identifies the interaction hierarchy and their topology. The geometry and conformation of the three forms are essentially similar which differ only by packing arrangement.


2018 ◽  
Author(s):  
Lincy Tom ◽  
Victoria A. Smolenski ◽  
Jerry P. Jasinski ◽  
M.R. Prathapachandra Kurup

The reaction of p-hydroxybenzaldehyde with an equimolar amount of isonicotinic hydrazide afforded two polymorphic and hydrate forms of p-hydroxybenzaldehyde isonicotinichydrazone (HBIH) by varying the experimental reaction conditions. The compounds are fully characterized by means of single crystal and powder diffraction methods, vibrational spectroscopy (FT-IR and Raman), thermal and elemental analysis. The compound crystallizes in three different forms in two different space groups, P21/c (form PA and PB) and Pbca (PC). The Hirshfeld surface analysis shows the differences in the relative contributions of intermolecular interactions to the total Hirshfeld surface area for the HBIH molecules. The calculated pairwise interaction energies (104-116 kJ/mol) can be related to the stability of the crystals. Energy framework analysis identifies the interaction hierarchy and their topology. The geometry and conformation of the three forms are essentially similar which differ only by packing arrangement.


2020 ◽  
pp. 15-20
Author(s):  
Ersin Yucel ◽  
Mine Yucel

In this study, the usage of the peppermint (Mentha piperita) for extracting the metal ions [Mg (II), Cr (II), Ni (II), Cu (II), Zn (II), Cd (II), Pb (II)] that exist at water was investigated. In order to analyze the stability properties, Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms were used at removing the metal ions and the highest correlation coefficients (R2) were obtained at Langmuir isotherm. Therefore, it is seen that the Langmuir model is more proper than the Freundlich model. However, it was found that the correlation coefficients of removing Ni and Cd is higher at Freundlich model than Langmuir and low at Dubinin-Radushkevich isotherm. It is established that the biosorption amount increase depends on the increase of biosorbent and it can be achieved high efficiency (95%) even with small amount (0.6 mg, peppermint extract) at lead ions. It is also determined that the peppermint extracted that is used at this study shows high biosorption capacity for metal ions and can be used for immobilization of metals from polluted areas.


2003 ◽  
Vol 792 ◽  
Author(s):  
V. Aubin ◽  
D. Caurant ◽  
D. Gourier ◽  
N. Baffier ◽  
S. Esnouf ◽  
...  

ABSTRACTProgress on separating the long-lived fission products from the high level radioactive liquid waste (HLW) has led to the development of specific host matrices, notably for the immobilization of cesium. Hollandite (nominally BaAl2Ti6O16), one of the main phases constituting Synroc, receives renewed interest as specific Cs-host wasteform. The radioactive cesium isotopes consist of short-lived Cs and Cs of high activities and Cs with long lifetime, all decaying according to Cs+→Ba2++e- (β) + γ. Therefore, Cs-host forms must be both heat and (β,γ)-radiation resistant. The purpose of this study is to estimate the stability of single phase hollandite under external β and γ radiation, simulating the decay of Cs. A hollandite ceramic of simple composition (Ba1.16Al2.32Ti5.68O16) was essentially irradiated by 1 and 2.5 MeV electrons with different fluences to simulate the β particles emitted by cesium. The generation of point defects was then followed by Electron Paramagnetic Resonance (EPR). All these electron irradiations generated defects of the same nature (oxygen centers and Ti3+ ions) but in different proportions varying with electron energy and fluence. The annealing of irradiated samples lead to the disappearance of the latter defects but gave rise to two other types of defects (aggregates of light elements and titanyl ions). It is necessary to heat at relatively high temperature (T=800°C) to recover an EPR spectrum similar to that of the pristine material. The stability of hollandite phase under radioactive cesium irradiation during the waste storage is discussed.


Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 70
Author(s):  
Maria Raposo ◽  
Carlota Xavier ◽  
Catarina Monteiro ◽  
Susana Silva ◽  
Orlando Frazão ◽  
...  

Thin graphene oxide (GO) film layers are being widely used as sensing layers in different types of electrical and optical sensor devices. GO layers are particularly popular because of their tuned interface reflectivity. The stability of GO layers is fundamental for sensor device reliability, particularly in complex aqueous environments such as wastewater. In this work, the stability of GO layers in layer-by-layer (LbL) films of polyethyleneimine (PEI) and GO was investigated. The results led to the following conclusions: PEI/GO films grow linearly with the number of bilayers as long as the adsorption time is kept constant; the adsorption kinetics of a GO layer follow the behavior of the adsorption of polyelectrolytes; and the interaction associated with the growth of these films is of the ionic type since the desorption activation energy has a value of 119 ± 17 kJ/mol. Therefore, it is possible to conclude that PEI/GO films are suitable for application in optical fiber sensor devices; most importantly, an optical fiber-based interrogation setup can easily be adapted to investigate in situ desorption via a thermally stimulated process. In addition, it is possible to draw inferences about film stability in solution in a fast, reliable way when compared with the traditional ones.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Qiangying Yi ◽  
Gleb B. Sukhorokov ◽  
Jin Ma ◽  
Xiaobo Yang ◽  
Zhongwei Gu

Phase change materials absorb the thermal energy when changing their phases (e.g., solid-to-liquid) at constant temperatures to achieve the latent heat storage. The major drawbacks such as limited thermal conductivity and leakage prevent the PCMs from wide application in desired areas. In this work, an environmentally friendly and low cost approach, layer-by-layer (LbL) assembly technique, was applied to build up ultrathin shells to encapsulate the PCMs and therefore to regulate their changes in volume when the phase change occurs. Generally, the oppositely charged strong polyelectrolytes Poly(diallyldimethylammonium chloride) (PDADMAC) and Poly(4-styrenesulfonic acid) sodium salt (PSS) were employed to fabricate multilayer shells on emulsified octadecane droplets using either bovine serum albumin (BSA) or sodium dodecyl sulfate (SDS) as surfactant. Specifically, using BSA as the surfactant, polyelectrolyte encapsulated octadecane spheres in size of ∼500 nm were obtained, with good shell integrity, high octadecane content (91.3% by mass), and good thermal stability after cycles of thermal treatments.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 133
Author(s):  
Yu-Che Cheng ◽  
Shu-Lin Guo ◽  
Kun-Da Chung ◽  
Wei-Wen Hu

To sustain gene delivery and elongate transgene expression, plasmid DNA and cationic nonviral vectors can be deposited through layer-by-layer (LbL) assembly to form polyelectrolyte multilayers (PEMs). Although these macromolecules can be released for transfection purposes, their entanglement only allows partial delivery. Therefore, how to efficiently deliver immobilized genes from PEMs remains a challenge. In this study, we attempt to facilitate their delivery through the pretreatment of the external electrical field. Multilayers of polyethylenimine (PEI) and DNA were deposited onto conductive polypyrrole (PPy), which were placed in an aqueous environment to examine their release after electric field pretreatment. Only the electric field perpendicular to the substrate with constant voltage efficiently promoted the release of PEI and DNA from PEMs, and the higher potential resulted in the more releases which were enhanced with treatment time. The roughness of PEMs also increased after electric field treatment because the electrical field not only caused electrophoresis of polyelectrolytes and but also allowed electrochemical reaction on the PPy electrode. Finally, the released DNA and PEI were used for transfection. Polyplexes were successfully formed after electric field treatment, and the transfection efficiency was also improved, suggesting that this electric field pretreatment effectively assists gene delivery from PEMs and should be beneficial to regenerative medicine application.


Sign in / Sign up

Export Citation Format

Share Document