scholarly journals PD-1+ melanocortin receptor dependent-Treg cells prevent autoimmune disease

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Fauziyya Muhammad ◽  
Dawei Wang ◽  
Alyssa Montieth ◽  
Stacey Lee ◽  
Janine Preble ◽  
...  

AbstractExperimental autoimmune uveoretinitis (EAU) is a mouse model of human autoimmune uveitis marked by ocular autoantigen-specific regulatory immunity in the spleen. The melanocortin 5 receptor (MC5r) and adenosine 2 A receptor (A2Ar) are required for induction of post-EAU regulatory T cells (Tregs) which provide resistance to EAU. We show that blocking the PD-1/PD-L1 pathway prevented suppression of EAU by post-EAU Tregs. A2Ar induction of PD-1+FoxP3+ Tregs in uveitis patients was similar compared to healthy controls, but was significantly reduced with melanocortin stimulation. Further, lower body mass index correlated with responsiveness to stimulation of this pathway. These observations indicate an importance of the PD-1/PD-L1 pathway to provide resistance to relapsing uveitis and shows a reduced capacity of uveitis patients to induce Tregs when stimulated through melanocortin receptors, but that it is possible to bypass this part of the pathway through direct stimulation of A2Ar.

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Filip Rolski ◽  
Marcin Czepiel ◽  
Kazimierz Weglarczyk ◽  
Maciej Siedlar ◽  
Gabriela Kania ◽  
...  

Background: Inflammatory heart diseases represent an important clinical problem, nonetheless data regarding activation of cardiac microvascular endothelial cells (MVECs) are limited. Aim: To examine influence of TNF-α and exosomes produced by heart-reactive CD4+ T lymphocytes on activation of cardiac MVECs. Methods: Experimental autoimmune myocarditis (EAM) was induced in wild-type (WT) and TNF-α-deficient (TNF-KO) mice. CD4+ T lymphocytes were isolated from EAM mice at day 21 and activated in vitro to produce conditioned medium and exosomes. Activation of MVECs was assessed by specific assays and leukocyte-to-endothelial adhesion was analysed under shear flow condition using the BioFlux microfluidic system. Results: TNF-KO mice showed lower prevalence of myocarditis when compared to WT mice (50% vs. 90%). Stimulation of MVECs with secretome of antigen-activated autoreactive T cells resulted in upregulation of adhesion molecules (ICAM-1, VCAM-1 and P-selectin), increased ROS and decreased NO production. Addition of anti-TNF-α neutralizing antibodies effectively blocked adhesion of leukocytes to MVECs activated with the conditioned medium. Endothelial activation and dysfunction induced by the conditioned medium were independent of TNF-α produced by T cells. Stimulation of MVECs with T cell-derived exosomes increased ROS and decreased levels of NO and eNOS activation, but exosomes neither increased expression of adhesion molecules in MVECs nor induced their ability to bind leukocytes. Conclusions: TNF-α promotes MVEC activation and EAM development. In this model, autoreactive T cells activate MVECs, and TNF-a produced by MVECs rather than T cells is essential in this process. On the other hand, endothelial dysfunction caused by T cells seems to be mediated mainly by exosomes.


2019 ◽  
Vol 316 (3) ◽  
pp. F572-F581 ◽  
Author(s):  
Stefanie Klinge ◽  
Karsten Yan ◽  
Daniel Reimers ◽  
Karen-Maria Brede ◽  
Joanna Schmid ◽  
...  

Anti-glomerular basement membrane (anti-GBM) disease is characterized by antibodies and T cells directed against the Goodpasture antigen, the noncollagenous domain of the α3-chain of type IV collagen [α3(IV)NC1] of the GBM. Consequences are the deposition of autoantibodies along the GBM and the development of crescentic glomerulonephritis (GN) with rapid loss of renal function. Forkhead box protein P3 (Foxp3)+ regulatory T (Treg) cells are crucial for the maintenance of peripheral tolerance to self-antigens and the prevention of immunopathology. Here, we use the mouse model of experimental autoimmune GN to characterize the role of Treg cells in anti-GBM disease. Immunization of DBA/1 mice with α3(IV)NC1 induced the formation of α3(IV)NC1-specific T cells and antibodies and, after 8–10 wk, the development of crescentic GN. Immunization resulted in increased frequencies of peripheral Treg cells and renal accumulation of these cells in the stage of acute GN. Depletion of Treg cells during immunization led to enhanced generation of α3(IV)NC1-specific antibodies and T cells and to aggravated GN. In contrast, depletion or expansion of the Treg cell population in mice with established autoimmunity had only minor consequences for renal inflammation and did not alter the severity of GN. In conclusion, our results indicate that in anti-GBM disease, Treg cells restrict the induction of autoimmunity against α3(IV)NC1. However, Treg cells are inefficient in preventing crescentic GN after autoimmunity has been established.


Endocrinology ◽  
2009 ◽  
Vol 150 (12) ◽  
pp. 5351-5361 ◽  
Author(s):  
Karolina P. Skibicka ◽  
Harvey J. Grill

Abstract Forebrain ventricular delivery of melanocortin receptor (MC3/4R) agonist increases energy expenditure and decreases food intake (FI). Because forebrain ventricular delivery provides ligand to various anatomically distributed MC3/4R-bearing nuclei, it is unclear which of the receptor subpopulations contributes to the feeding suppression and the sympathetic-thermogenic effects observed. The literature indicates that reexpression of MC4R in the paraventricular nucleus (PVH) affects the feeding but not the energetic phenotype of the MC4R knockout, suggesting that divergent MC4R populations mediate energy expenditure (hindbrain) and FI (hypothalamus) effects of stimulation. Not consistent with this view are data indicating that PVH sympathetic projection neurons express MC4Rs and that feeding effects are induced from hindbrain MC4R sites. Therefore, we hypothesize an opposing perspective: that stimulation of anatomically diverse MC3/4R-bearing nuclei triggers energetic as well as feeding effects. To test this hypothesis, ventricle subthreshold doses of MC3/4R agonist (5 and 10 pmol) were applied in separate experiments to six hindbrain and hypothalamic sites; core temperature (Tc), heart rate (HR), spontaneous activity (SPA), and FI were measured in behaving rats. Nucleus tractus solitarius and PVH stimulation increased Tc, HR, and SPA and decreased FI. Rostral ventrolateral medulla, parabrachial nucleus, and retrochiasmatic area stimulation increased Tc, HR, but not SPA, and decreased FI. The response profile differed to some extent for each nucleus tested, suggesting differential output circuitries for the measured parameters. Data are consistent with the view that energetic and feeding responses are not controlled by regionally divergent MC3/4Rs and can be elicited from multiple, anatomically distributed MC3/4R populations.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 357-357
Author(s):  
S. Mittal ◽  
N.A. Marshall ◽  
L. Duncan ◽  
D.J. Culligan ◽  
R.N. Barker ◽  
...  

Abstract Regulatory T (Treg) cells contribute to immune evasion by malignancies. To investigate their importance in non-Hodgkin’s lymphoma (NHL), we enumerated Treg cells in peripheral blood mononuclear cells (PBMC) and involved tissues from 30 newly diagnosed patients. CD25+FoxP3+CD127lowCD4+ Treg cells were increased markedly in PBMC (median=20.4% CD4 T cells, n=20) versus healthy controls (median=3.2%, n=13; p<0. 001, rank sum test) and correlated with serum lactate dehydrogenase (n=14; Rs=0.79, p <0.0001) and disease stage. The median Treg percentage of CD4 T cells from early stages (Ann Arbor stage I and II, n=4) was 12.2%, whereas it was 25.4% in advanced disease (Ann Arbor stages III, IV or bulky stage II, ≥5cm, n=10; p =0.013). We also enumerated Tr1 cells, both in peripheral blood and involved tissue samples, and again compared with healthy controls but no significant differences were noted. We documented poor proliferation of T cells with mitogen ConA and almost none with recall antigens PPD and DPT in both PBMC and involved tissue samples (n=9). T cell hyporesponsiveness was reversed by depleting CD25+ cells (n=4), or by adding anti-CTLA-4 (n=3), supporting the view that Treg cells explain the systemic immunosuppression seen in NHL. A high proportion of Treg cells was also present in involved tissues (median=38.8% CD4 T cells, n=15) versus reactive nodes (median=11.6%, n=2, p=0.02). Therefore, we tested the hypothesis that a regulatory phenotype is induced from conventional T cells within the tumor microenvironment. When autologous CD25- PBMC fractions were incubated with tumor cells from patients (n=6) in vitro, there was consistent strong induction and then expansion of cells with the CD4+CD25+FoxP3+ phenotype of classic ‘natural’ Treg cells as indicated by CFSE dilution. This induction was dependent on tumor dose and was seen when we depleted lymphoid dendritic cells from the involved tissue cell suspension using anti-CD304, or enriched the tumor cells by positive selection of CD20+ cells. This population was confirmed to be suppressive in function (n=3). We also investigated the mechanisms of this induction. Both cell-cell contact and soluble factors appeared important. In two of four cases, some induction was also noted with transwell experiments or with tumor cell conditioned supernatant, indicating that in these cases soluble factors are also involved apart from direct cell-cell contact mechanism. Reports elsewhere suggest roles for prostaglandin E2, tryptophan catabolism, IL-9 and PD-1 interaction with its ligands in inducing a Treg phenotype. Thus, we used cyclooxygenase inhibitors aspirin and sulindac, the indoleamine 2, 3-dioxygenase (IDO) inhibitor 1-methyl tryptophan (1MT), anti-IL-9 receptor antibody and blocking anti-PDL-1 or anti-PDL-2 antibodies in four samples. None of these reagents inhibited Treg induction apart from one case where both anti-PDL-1 and anti-PDL-2 blocking antibodies inhibited Treg induction. We conclude that NHL cells are powerful inducers of Treg cells, which may represent a new therapeutic target.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e17511-e17511
Author(s):  
Prabhat Singh Malik ◽  
Vinod Raina ◽  
Amar Singh ◽  
Dipendrea Kumar Mitra

e17511 Background: Enrichment of regulatory T (Treg) cells at the affected anatomic site in cancer may suppress the anti-tumor immune response influencing the cancer progression. Understanding of the clinical relevance of Treg mediated suppression of anti-tumor immune response and mechanisms underlying their preferential trafficking to the affected anatomic site is still limited. The aim of this study was to enumerate the frequencies of Treg cells in malignant pleural effusion and peripheral blood of patients with advanced NSCLC and it’s trend after treatment. Methods: Treg frequencies were evaluated in pleural effusion and peripheral blood of the patients with advanced NSCLC (n=27) using flowcytometry and compared with peripheral blood of age and sex matched healthy controls (n=15) and tubercular pleural effusions (n=10). The Treg cells were characterized as CD4+CD25+Foxp3+ T cells gated on CD4+CD25+ T cells. We assessed the effect of treatment response on Treg frequency. We have also looked for the expression of chemokine receptors CCR4 and CCR6 on the Tregs in pleural effusion and peripheral blood of the patients. Results: Compared to healthy controls, frequency of CD4+CD25+Foxp3+ Tregs was significantly increased in peripheral blood of patients with NSCLC (p=0.0036). In pleural effusion of patients, Treg frequency was higher than their corresponding peripheral blood (p=0.025). As compared to tubercular pleural effusion Treg frequency was higher in malignant effusion (p<0.0001). We had 12 patients who completed treatment and in whom response evaluation was available. Treg frequency reduced at the time of response (PR or SD) and increased again at disease progression. Surface expression of CCR4 and CCR6 was higher on Treg cells as compared to non Treg CD4 cells among the patients (p=0.0001; p=0.001 respectively). However, there was no difference in expression of these chemokine receptors on Tregs in pleural fluid and peripheral blood. Conclusions: Tregs are increased in patients of NSCLC, both at disease site and in systemic circulation. This increase may be chemokine receptors mediated. Treg frequency changes with treatment and response. Modulation of Tregs may have therapeutic implication in the management of advanced NSCLC.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 11577-11577 ◽  
Author(s):  
Jooeun Bae ◽  
Brandon Nguyen ◽  
Yu-Tzu Tai ◽  
Teru Hideshima ◽  
Dharminder Chauhan ◽  
...  

11577 Background: Characterization of expression and function of immune regulatory molecules in tumor microenvironment will provide the framework for developing novel therapeutic strategies. Methods: We evaluated the expression and functional impact of various immuno-regulatory molecules, PD-1, PDL-1, PDL-2, LAG3, TIM3, OX40 and GITR, on the CD138+ tumor cells, myeloid derived suppressor cells (MDSC), and T cell subsets from patients with MGUS, SMM and active MM (newly diagnosed, relapsed, relapsed/refractory), and the myeloma-specific cytotoxic T lymphocytes (CTL) induced with XBP1/CD138/CS1 peptides. Results: PDL-1/PDL-2 was more highly expressed on CD138+ myeloma cells in active MM than SMM or MGUS. G-type MDSC (CD11b+CD33+HLA-DRlowCD15+). Treg cells (CD3+CD4+/CD25+FOXP3+) numbers were increased and expressed higher levels of PD1/PD-L1 in active MM than in MGUS, SMM or healthy donors. Among the checkpoint molecules (PD-1, PDL-1, PDL-2, LAG3, OX40, GITR) evaluated, PD-1 showed the highest expression on CD3+CD4+ and CD3+CD8+T cells in BMMC and PBMC from patients with active MM. Functionally, T cells from MM patients showed increased proliferation upon treatment with an individual immune agonist ( > 150%) or checkpoint inhibitor ( > 100%). Interestingly, each individual anti-checkpoint molecule induced proliferation of T cells expressing other checkpoint molecules. In addition, the blockade of PD1, LAG3 or TIM3 enhanced MM antigen-specific cytotoxicity, assessed by parameters including CD107a, granzyme B and IFN-g production, which was most prominent within the memory CTL subset of MM antigen-specific T cells. Conclusions: These results demonstrate an increased frequency of immune regulatory cells, which highly express checkpoint inhibitors in active MM. Direct stimulation with an immune agonist or blockade of a checkpoint inhibitor increased MM patients’ T cell proliferation and myeloma-specific CTL function, supporting development of combination immune regulatory therapies to improve patient outcome in MM.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hua-Li Sun ◽  
Xiu-Fang Du ◽  
Yun-Xia Tang ◽  
Guo-Qiang Li ◽  
Si-Yuan Yang ◽  
...  

Abstract Background The immunoregulatory functions of regulatory T cells (Tregs) in the development and progression of some chronic infectious diseases are mediated by immune checkpoint molecules and immunosuppressive cytokines. However, little is known about the immunosuppressive functions of Tregs in human brucellosis, which is a major burden in low-income countries. In this study, expressions of immune checkpoint molecules and Treg-related cytokines in patients with acute and chronic Brucella infection were evaluated to explore their impact at different stages of infection. Methods Forty patients with acute brucellosis and 19 patients with chronic brucellosis admitted to the Third People’s Hospital of Linfen in Shanxi Province between August 2016 and November 2017 were enrolled. Serum and peripheral blood mononuclear cells were isolated from patients before antibiotic treatment and from 30 healthy subjects. The frequency of Tregs (CD4+ CD25+ FoxP3+ T cells) and expression of CTLA-4, GITR, and PD-1 on Treg cells were detected by flow cytometry. Levels of Treg-related cytokines, including IL-35, TGF-β1, and IL-10, were measured by customised multiplex cytokine assays using the Luminex platform. Results The frequency of Tregs was higher in chronic patients than in healthy controls (P = 0.026) and acute patients (P = 0.042); The frequency of CTLA-4+ Tregs in chronic patients was significantly higher than that in healthy controls (P = 0.011). The frequencies of GITR+ and PD-1+ Tregs were significantly higher in acute and chronic patients than in healthy controls (P < 0.05), with no significant difference between the acute and chronic groups (all P > 0.05). Serum TGF-β1 levels were higher in chronic patients (P = 0.029) and serum IL-10 levels were higher in acute patients (P = 0.033) than in healthy controls. We detected weak correlations between serum TGF-β1 levels and the frequencies of Tregs (R = 0.309, P = 0.031) and CTLA-4+ Tregs (R = 0.302, P = 0.035). Conclusions Treg cell immunity is involved in the chronicity of Brucella infection and indicates the implication of Tregs in the prognosis of brucellosis. CTLA-4 and TGF-β1 may contribute to Tregs-mediated immunosuppression in the chronic infection stage of a Brucella infection.


Sign in / Sign up

Export Citation Format

Share Document