scholarly journals Global Phylogeographic and Admixture Patterns in Grey Wolves and Genetic Legacy of An Ancient Siberian Lineage

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Małgorzata Pilot ◽  
Andre E. Moura ◽  
Innokentiy M. Okhlopkov ◽  
Nikolay V. Mamaev ◽  
Abdulaziz N. Alagaili ◽  
...  

AbstractThe evolutionary relationships between extinct and extant lineages provide important insight into species’ response to environmental change. The grey wolf is among the few Holarctic large carnivores that survived the Late Pleistocene megafaunal extinctions, responding to that period’s profound environmental changes with loss of distinct lineages and phylogeographic shifts, and undergoing domestication. We reconstructed global genome-wide phylogeographic patterns in modern wolves, including previously underrepresented Siberian wolves, and assessed their evolutionary relationships with a previously genotyped wolf from Taimyr, Siberia, dated at 35 Kya. The inferred phylogeographic structure was affected by admixture with dogs, coyotes and golden jackals, stressing the importance of accounting for this process in phylogeographic studies. The Taimyr lineage was distinct from modern Siberian wolves and constituted a sister lineage of modern Eurasian wolves and domestic dogs, with an ambiguous position relative to North American wolves. We detected gene flow from the Taimyr lineage to Arctic dog breeds, but population clustering methods indicated closer similarity of the Taimyr wolf to modern wolves than dogs, implying complex post-divergence relationships among these lineages. Our study shows that introgression from ecologically diverse con-specific and con-generic populations was common in wolves’ evolutionary history, and could have facilitated their adaptation to environmental change.

2001 ◽  
Vol 12 (2) ◽  
pp. 323-337 ◽  
Author(s):  
Helen C. Causton ◽  
Bing Ren ◽  
Sang Seok Koh ◽  
Christopher T. Harbison ◽  
Elenita Kanin ◽  
...  

We used genome-wide expression analysis to explore how gene expression in Saccharomyces cerevisiae is remodeled in response to various changes in extracellular environment, including changes in temperature, oxidation, nutrients, pH, and osmolarity. The results demonstrate that more than half of the genome is involved in various responses to environmental change and identify the global set of genes induced and repressed by each condition. These data implicate a substantial number of previously uncharacterized genes in these responses and reveal a signature common to environmental responses that involves ∼10% of yeast genes. The results of expression analysis with MSN2/MSN4 mutants support the model that the Msn2/Msn4 activators induce the common response to environmental change. These results provide a global description of the transcriptional response to environmental change and extend our understanding of the role of activators in effecting this response.


2004 ◽  
Vol 359 (1442) ◽  
pp. 295-303 ◽  
Author(s):  
K. D. Bennett

The Quaternary has been a period of dramatic environmental change for the past 1.8 Myr, with major shifts in distributions and abundances of terrestrial and marine organisms. The evolutionary consequences of this have been debated since the nineteenth century. However, the lack of accurate relative and absolute time–scales for evolutions and environmental change inhibited progress. We do now have an understanding of time–scales. Palaeoecology has demonstrated the individualistic nature of species' response to environmental change, but lacks a means of determining ancestry. DNA characterization of modern populations in relation to their distributions nicely complements palaeoecological results by contributing ancestry. The chance to understand how species originate and the causal factors of speciation (environmental change or otherwise) may be within reach.


2011 ◽  
Vol 8 (1) ◽  
pp. 64-66 ◽  
Author(s):  
P. Raia ◽  
F. Passaro ◽  
D. Fulgione ◽  
F. Carotenuto

Species response to environmental change may vary from adaptation to the new conditions, to dispersal towards territories with better ecological settings (known as habitat tracking), and to extinction. A phylogenetically explicit analysis of habitat tracking in Caenozoic large mammals shows that species moving over longer distances during their existence survived longer. By partitioning the fossil record into equal time intervals, we showed that the longest distance was preferentially covered just before extinction. This supports the idea that habitat tracking is a key reaction to environmental change, and confirms that tracking causally prolongs species survival. Species covering longer distances also have morphologically less variable cheek teeth. Given the tight relationship between cheek teeth form and habitat selection in large mammals, this supports the well-known, yet little tested, idea that habitat tracking bolsters morphological stasis.


Biologia ◽  
2015 ◽  
Vol 70 (10) ◽  
Author(s):  
Márta E. Rosa ◽  
Flóra Bradács ◽  
Jácint Tökölyi

AbstractNatural environments tend to be variable resulting in alternating periods of high and low food availability. Therefore, animals have to be able to accommodate to sudden environmental changes by adjusting their physiology and behaviour to new conditions. We investigated how simulated food variability affects life history traits (asexual reproduction and stress tolerance) and response to environmental change in laboratory experiments with green hydra (Hydra viridissima). We assigned hydra into four groups differing in feeding frequency (high or low) and food regularity (random or stable). After 21 days of accommodation, feeding frequency was changed (increased or decreased) in half of each group, the other half was kept as a control group. Hydra showed a delayed response to environmental change (increased or decreased feeding frequency). This delay in response was greater under an unpredictable feeding scheme. Animals on a random scheme had lower budding rates and lower stress tolerance. Follow-up experiments suggest that this might be due to receiving food on subsequent days, since we found that animals fed daily have lower budding rates than those fed on alternate days. We hypothesize that frequent feeding might cause high levels of oxidative/xenobiotic stress which could overwhelm the defence system of these animals.


2018 ◽  
Vol 143 (1) ◽  
pp. 84-90 ◽  
Author(s):  
Yingmei Gao ◽  
Jingkang Hu ◽  
Tingting Zhao ◽  
Xiangyang Xu ◽  
Jingbin Jiang ◽  
...  

BRI1-EMS-suppressor 1 (BES1) is a transcription factor (TF) that functions as a master regulator of brassinosteroid (BR)-regulated gene expression. Here, we provide a complete overview of Solanum lycopersicum BES1 (SLB) genes, including phylogeny, gene structure, protein motifs, chromosome locations and expression characteristics. Through bioinformatic analysis, we compared the sequences of SLB genes, arabidopsis (Arabidopsis thaliana) genes, and chinese cabbage (Brassica pekinensis) genes. All of the gene sequences were divided into three groups by cluster analysis. SLB genes were mapped to the eight tomato (S. lycopersicum) chromosomes. Bioinformatic analysis showed that SLB genes shares similarities with the proteins from other plants, though different species exhibit specific features. The expression patterns of SLB genes in various tissues and under different abiotic conditions were analyzed by quantitative reverse transcription polymerase chain reaction. SLB genes were found to be induced by multiple stresses, particularly salt stress, indicating that SLB genes may have important roles in the response to unfavorable environmental changes. This study provides insight into the evolution of SLB genes and may aid in the further functional identification of BES1 proteins and the response of tomato plants to different stresses.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1258
Author(s):  
Dan Yao ◽  
Lei Cheng ◽  
Lianming Du ◽  
Meijin Li ◽  
Maurycy Daroch ◽  
...  

Microsatellites (simple sequence repeats, SSRs) are ubiquitously distributed in almost all known genomes. Here, the first investigation was designed to examine the SSRs and compound microsatellites (CSSRs) in genomes of Leptolyngbya-like strains. The results disclosed diversified patterns of distribution, abundance, density, and diversity of SSRs and CSSRs in genomes, indicating that they may be subject to rapid evolutionary change. The numbers of SSRs and CSSRs were extremely unevenly distributed among genomes, ranging from 11,086 to 24,000 and from 580 to 1865, respectively. Dinucleotide SSRs were the most abundant category in 31 genomes, while the other 15 genomes followed the pattern: mono- > di- > trinucleotide SSRs. The patterns related to SSRs and CSSRs showed differences among phylogenetic groups. Both SSRs and CSSRs were overwhelmingly distributed in coding regions. The numbers of SSRs and CSSRs were significantly positively correlated with genome size (p < 0.01) and negatively correlated with GC content (p < 0.05). Moreover, the motif (A/C)n and (AG)n was predominant in mononucleotide and dinucleotide SSRs, and unique motifs of CSSRs were identified in 39 genomes. This study provides the first insight into SSRs and CSSRs in genomes of Leptolyngbya-like strains and will be useful to understanding their distribution, predicting their function, and tracking their evolution. Additionally, the identified SSRs may provide an evolutionary advantage of fast adaptation to environmental changes and may play an important role in the cosmopolitan distribution of Leptolyngbya strains to globally diverse niches.


Sign in / Sign up

Export Citation Format

Share Document