scholarly journals A Pre-clinical Animal Model of Secondary Head and Neck Lymphedema

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Giulia Daneshgaran ◽  
Andrea Y. Lo ◽  
Connie B. Paik ◽  
Michael N. Cooper ◽  
Cynthia Sung ◽  
...  

AbstractHead and neck lymphedema (HNL) is a disfiguring disease affecting over 90% of patients treated for head and neck cancer. Animal models of lymphedema are used to test pharmacologic and microsurgical therapies; however, no animal model for HNL is described in the literature to date. In this study we describe the first reproducible rat model for HNL. Animals were subjected to two surgical protocols: (1) lymphadenectomy plus irradiation; and (2) sham surgery and no irradiation. Head and neck expansion was measured on post-operative days 15, 30 and 60. Magnetic resonance imaging (MRI) was acquired at the same time points. Lymphatic drainage was measured at day 60 via indocyanine green (ICG) lymphography, after which animals were sacrificed for histological analysis. Postsurgical lymphedema was observed 100% of the time. Compared to sham-operated animals, lymphadenectomy animals experienced significantly more head and neck swelling at all timepoints (P < 0.01). Lymphadenectomy animals had significantly slower lymphatic drainage for 6 days post-ICG injection (P < 0.05). Histological analysis of lymphadenectomy animals revealed 83% greater subcutis thickness (P = 0.008), 22% greater collagen deposition (P = 0.001), 110% greater TGFβ1+ cell density (P = 0.04), 1.7-fold increase in TGFβ1 mRNA expression (P = 0.03), and 114% greater T-cell infiltration (P = 0.005) compared to sham-operated animals. In conclusion, animals subjected to complete lymph node dissection and irradiation developed changes consistent with human clinical postsurgical HNL. This was evidenced by significant increase in all head and neck measurements, slower lymphatic drainage, subcutaneous tissue expansion, increased fibrosis, and increased inflammation compared to sham-operated animals.

Author(s):  
Lauren E. Miller ◽  
David A. Shaye

AbstractNecrotizing fasciitis (NF) is part of the class of necrotizing soft tissue infections characterized by rapid fascial spread and necrosis of the skin, subcutaneous tissue, and superficial fascia. If left untreated, NF can rapidly deteriorate into multiorgan shock and systemic failure. NF most commonly infects the trunk and lower extremities, although it can sometimes present in the head and neck region. This review provides an overview of NF as it relates specifically to the head and neck region, including its associated clinical features and options for treatment. Noma, a related but relatively unknown disease, is then described along with its relationship with severe poverty.


2008 ◽  
Vol 19 (1) ◽  
pp. 40-45 ◽  
Author(s):  
Ana Teresa Sant'anna ◽  
Luis Carlos Spolidório ◽  
Lizeti Toledo Oliveira Ramalho

This study performed a histological analysis of the effect of formocresol associated to endotoxin (LPS) in the subcutaneous connective tissue of mice. Ninety mice were randomly assigned to 3 groups (n=30). Each animal received one plastic tube implant containing endotoxin solution (10 mg/mL), formocresol (original formula) or a mixture of endotoxin and formocresol. The endotoxin and formocresol groups served as controls. The periods of analysis were 7, 15 and 30 days. At each experimental period, tissue samples were collected and submitted to routine processing for histological analysis. Endotoxin and formocresol produced necrosis and chronic inflammation at 7 and 15 days. At 30 days, the endotoxin group showed no necrosis, while in the formocresol group necrosis persisted. The formocresol-endotoxin association produced necrosis and chronic inflammation in the same way as observed with formocresol at all experimental periods. In conclusion, formocresol seems not to be able to inactive the toxic effects of endotoxin in connective tissues.


2021 ◽  
Vol 10 (14) ◽  
pp. e518101422159
Author(s):  
Deise Ponzoni ◽  
Elissa Kerli Fernandes ◽  
Mateus Muller da Silva ◽  
Izabel Cristina Custódio de Souza ◽  
John Kim Neubert ◽  
...  

Bisphosphonates (BIS) are indicated for several clinical disorders (e.g., osteoporosis). However, BIS has been associated with osteonecrosis and alterations in osteoclastogenesis and skeletal development. This study aimed to evaluate the effects of BIS (zoledronic acid - ZA and alendronate sodium - AS) on zones of the growth plate of rat femur. Animals (Wistar rats, n = 19) were divided into groups: 1) AS Group: animals received alendronate sodium orally (3 mg/kg per day); 2) ZA Group: ZA was administered intraperitoneally (0.2 mg/kg per week); and 3) Control Group (CG): a vehicle was administered. Animals were euthanized 21 days after the treatment, and femurs were collected for histological analysis. The images of all zones (resting, proliferative, hypertrophic, and calcified) were processed by the Qcapture® software providing a 40 and 400-fold increase.  ZA decreased epiphyseal growth plate cell zones (ZA Group vs. CG) in most cases. Likewise, AS diminished the proliferative zone (AS Group vs. CG). Furthermore, ZA increased the calcified zone (ZA Group vs. CG). Previous works demonstrated that BIS decrease the epiphyseal disc. This reduction is probably due to the shortening of the cellular zones that undergoes calcification/ossification. The present results suggest that BIS should be carefully indicated because these drugs might accelerate epiphyseal closure.


1998 ◽  
Vol 41 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Joseph T. Chun ◽  
Rod J. Rohrich

Sign in / Sign up

Export Citation Format

Share Document