scholarly journals Succession in arbuscular mycorrhizal fungi can be attributed to a chronosequence of Cunninghamia lanceolata

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nini Lu ◽  
Xuelei Xu ◽  
Ping Wang ◽  
Peng Zhang ◽  
Baoming Ji ◽  
...  

AbstractArbuscular mycorrhizal (AM) fungi play an important role in plant-fungi communities. It remains a central question of how the AM fungal community changes as plants grow. To establish an understanding of AM fungal community dynamics associated with Chinese fir, Chinese fir with five different growth stages were studied and 60 root samples were collected at the Jiangle National Forestry Farm, Fujian Province. A total of 76 AM fungal operational taxonomic units (OTUs) were identified by high-throughput sequencing on an Illumina Miseq platform. The genera covered by OTUs were Glomus, Archaeospora, Acaulospora, Gigaspora and Diversispora. Glomus dominated the community in the whole stage. The number and composition of OTUs varied along with the host plant growth. The number of OTUs showed an inverted V-shaped change with the host plant age, and the maximum occurred in 23-year. Overall, the basic species diversity and richness in this study were stable. Non-metric multi-dimensional scaling (NMDS) analysis based on bray-curtis distance revealed that there were remarkable differentiations between the 9-year and other stages. Besides, AM fungal community in 32-year had a significant difference with that of 23-year, while no significant difference with that of 45-year, suggesting that 32-year may be a steady stage for AM fungi associated with Chinese fir. The cutting age in 32-year may be the most favorable for microbial community. The pH, total N, total P, total K, available N, available P, available K, organic matter and Mg varied as the Chinese fir grows. According to Mantel test and redundancy analysis, available N, available P, K and Mg could exert significant influence on AM fungal communities, and these variables explained 31% of variance in the composition of AM fungal communities.

2020 ◽  
Author(s):  
Li Ji ◽  
Yan Zhang ◽  
Yuchun Yang ◽  
Lixue Yang ◽  
Na Yang ◽  
...  

Abstract Background: Establishing mixed plantations is an effective way to improve soil fertility and increase forest productivity. Arbuscular mycorrhizal (AM) fungi are obligate symbiotic fungi that can promote mineral nutrient absorption and regulate intraspecific and interspecific competition in plants. However, the effects of mixed plantations on the community structure and abundance of AM fungi are still unclear. Illumina MiSeq sequencing was used to investigate the AM fungal community in the roots and soils of pure and mixed plantations (Juglans mandshurica × Larix gmelinii). The objective of this study is to compare the differential responses of the root and rhizosphere soil AM fungal communities of Juglans mandshurica to long-term mixed plantation management.Results: Glomus and Paraglomus were the dominant genera in the root samples, accounting for more than 80% of the sequences. Compared with that in the pure plantation, the relative abundance of Glomus was higher in the mixed plantation. Glomus, Diversispora and Paraglomus accounted for more than 85% of the sequences in the soil samples. The relative abundances of Diversispora and an unidentified genus of Glomeromycetes were higher and lower in the pure plantation, respectively. The Root_P samples (the roots in the pure plantation) had the highest number of unique OTUs (operational taxonomic units), which belonged mainly to an unidentified genus of Glomeromycetes, Paraglomus, Glomus and Acaulospora. The number of unique OTUs detected in the soil was lower than that in the roots. In both the root and soil samples, the forest type did not have a significant effect on AM fungal diversity, but the Sobs value and the Shannon, Chao1 and Ace indices of AM fungi in the roots were significantly higher than those in the soil.Conclusions: Mixed forest management had little effect on the AM fungal community of Juglans mandshurica roots and significantly changed the community composition of the soil AM fungi, but not the diversity.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Li Ji ◽  
Yan Zhang ◽  
Yuchun Yang ◽  
Lixue Yang ◽  
Na Yang ◽  
...  

Abstract Background Establishing mixed plantations is an effective way to improve soil fertility and increase forest productivity. Arbuscular mycorrhizal (AM) fungi are obligate symbiotic fungi that can promote mineral nutrient absorption and regulate intraspecific and interspecific competition in plants. However, the effects of mixed plantations on the community structure and abundance of AM fungi are still unclear. Illumina MiSeq sequencing was used to investigate the AM fungal community in the roots and soils of pure and mixed plantations (Juglans mandshurica × Larix gmelinii). The objective of this study is to compare the differential responses of the root and rhizosphere soil AM fungal communities of Juglans mandshurica to long-term mixed plantation management. Results Glomus and Paraglomus were the dominant genera in the root samples, accounting for more than 80% of the sequences. Compared with that in the pure plantation, the relative abundance of Glomus was higher in the mixed plantation. Glomus, Diversispora and Paraglomus accounted for more than 85% of the sequences in the soil samples. The relative abundances of Diversispora and an unidentified genus of Glomeromycetes were higher and lower in the pure plantation, respectively. The Root_P samples (the roots in the pure plantation) had the highest number of unique OTUs (operational taxonomic units), which belonged mainly to an unidentified genus of Glomeromycetes, Paraglomus, Glomus and Acaulospora. The number of unique OTUs detected in the soil was lower than that in the roots. In both the root and soil samples, the forest type did not have a significant effect on AM fungal diversity, but the Sobs value and the Shannon, Chao1 and Ace indices of AM fungi in the roots were significantly higher than those in the soil. Conclusions Mixed forest management had little effect on the AM fungal community of Juglans mandshurica roots and significantly changed the community composition of the soil AM fungi, but not the diversity.


2018 ◽  
Vol 20 (1) ◽  
pp. 31
Author(s):  
Supriyadi Supriyadi

<p>The objective of this research was understanding the impact of planting method to N and P element in the soil (swapt away by erosion) of aslant land, determining the best planting method and plant variety that has best ability to reduce erosion of N and P element. This research employed erosion block for seasonal plants with 30<sup>O</sup> of declivity. Erosion of N and P element examined by analyzing the soil swept away by erotion every 5 days. Analysis of N and P element included available N, total N, available P and total P. Then the data was analyzed with T-test at 95% level confidence.</p><p>Conclusion taken from this research were: 1) Planting method reduce availble P and total P element, respectively as much as 15% and 20%, but there was no significant difference between available N and total P, 2) There was significant difference between available P and total P, when the variety of plant and combination was employed as a treatment variation, 3) Pennisetum purpureum planted by using equidistant method reduce N and P element in the soil, respectively as much as 15% and 20%.</p>


2014 ◽  
Vol 60 (9) ◽  
pp. 619-624 ◽  
Author(s):  
P.-L. Chagnon ◽  
L.D. Bainard

Arbuscular mycorrhizal (AM) fungi are widespread plant symbionts that extensively colonize both soil and roots. Given their influence on ecosystem processes, such as plant growth, soil carbon storage, and nutrient cycling, there is great interest in understanding the drivers of their community structure. AM fungal communities are increasingly characterized by selectively amplifying their DNA from plant roots, thus assuming that AM fungal community structure within roots provides a reliable portrait of the total (i.e., soil + roots) community. Through numerical simulations, we test this assumption using published data. We show that community structure and diversity is well preserved when analyzing only a subset of the community biomass (i.e., roots or soil), provided that the community shows a typical skewed abundance distribution, with few very dominant species and a high prevalence of rare species. Given that this community structure has been shown to be common in natural AM fungal communities, the present work would suggest that characterizing AM fungal communities using only roots or soil can provide a reliable portrait of the overall community. However, we show through additional analyses that the proportion of sample biomass used for molecular methods must be over a minimal threshold to properly characterize the community. Using published molecular data sets, we validate those results, which suggest that typical molecular protocols using low amounts of biomass may strongly influence AM fungal community characterization. Finally, we also discuss other assumptions implied by the molecular analysis of AM fungal communities, and point out urgent knowledge gaps.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 361
Author(s):  
Clara P. Peña-Venegas ◽  
Armando Sterling ◽  
Tatiana K. Andrade-Ramírez

Rubber (Hevea brasiliensis, (Willd. Ex Adr. de Juss) Muell. Arg, Euphorbiaceae) is an important commercial latex-producing plant. Commercially, rubber is reproduced from a limited number of grifting genotypes. New promising genotypes have been selected to replace traditional genotypes. In addition, rubber has been promoted to recuperate Amazon soils degraded by extensive cattle ranching. Arbuscular mycorrhizal (AM) symbiosis is an important alternative for improving plant nutrition in rubber trees and recuperating degraded soils, but AM fungal communities on different plantations and in rubber genotypes are unknown. Spore abundance, root colonization and AM fungal community composition were evaluated in rubber roots of Colombian and introduced genotypes cultivated in degraded soils with different plantation types. Traditional (spore isolation and description; clearing and staining roots) and molecular techniques (Illumina sequencing) were used to assess AM fungi. Rubber roots hosted a diverse AM fungal community of 135 virtual taxa (VT) in 13 genera. The genus Glomus represented 66% of the total AM fungal community. Rubber genotype did not affect the arbuscular mycorrhization, hosting similar AM fungal communities. The composition of the AM fungal community on old and young rubber plantations was different. Diversity in AM fungi in rubber roots is an important characteristic for restoring degraded soils.


2020 ◽  
Author(s):  
Adam Frew ◽  
Bree A. L. Wilson

ABSTRACTArbuscular mycorrhizal (AM) fungi are ubiquitous symbionts of most terrestrial plants. These fungi not only provide their host plants with access to nutrients and resources but are known to augment plant defences against insect herbivores. Relatively little is known about the role of AM fungal diversity and community assembly on the expression of plant defence traits. Here, we report how plant (Triticum aestivum) phenolic-based resistance to insect herbivory is differentially affected by different AM fungal communities. An inoculant of four AM fungal species and a field-sourced native AM fungal community increased plant phenolics by 47.9% and 50.2%, respectively, compared to plants inoculated with only one fungal species. Correspondingly, the performance (relative growth rate) of the insect herbivore was 36% and 61.3% lower when feeding on plants associated with these AM fungal communities. Furthermore, there was a negative correlation between foliar phenolics and herbivore growth. We propose that AM fungal community assembly can drive insect herbivore performance by affecting phenolic-based defence mechanisms.


2018 ◽  
Vol 64 (8) ◽  
pp. 527-536 ◽  
Author(s):  
Walid Ellouze ◽  
Chantal Hamel ◽  
Asheesh K. Singh ◽  
Vachaspati Mishra ◽  
Ron M. DePauw ◽  
...  

Understanding the variation in how wheat genotypes shape their arbuscular mycorrhizal (AM) fungal communities in a prairie environment is foundational to breeding for enhanced AM fungi–wheat interactions. The AM fungal communities associated with 32 durum wheat genotypes were described by pyrosequencing of amplicons. The experiment was set up at two locations in the Canadian prairies. The intensively managed site was highly dominated by Funneliformis. Genotype influenced the AM fungal community in the rhizosphere soil, but there was no evidence of a differential genotype effect on the AM fungal community of durum wheat roots. The influence of durum wheat genotype on the AM fungal community of the soil was less important at the intensively managed site. Certain durum wheat genotypes, such as Strongfield, Plenty, and CDC Verona, were associated with high abundance of Paraglomus, and Dominikia was undetected in the rhizosphere of the recent cultivars Enterprise, Eurostar, Commander, and Brigade. Genetic variation in the association of durum wheat with AM fungi suggests the possibility of increasing the sustainability of cropping systems through the use of durum wheat genotypes that select highly effective AM fungal taxa residing in the agricultural soils of the Canadian prairies.


2011 ◽  
Vol 77 (14) ◽  
pp. 4770-4777 ◽  
Author(s):  
Irena Maček ◽  
Alex J. Dumbrell ◽  
Michaela Nelson ◽  
Alastair H. Fitter ◽  
Dominik Vodnik ◽  
...  

ABSTRACTThe processes responsible for producing and maintaining the diversity of natural arbuscular mycorrhizal (AM) fungal communities remain largely unknown. We used natural CO2springs (mofettes), which create hypoxic soil environments, to determine whether a long-term, directional, abiotic selection pressure could change AM fungal community structure and drive the selection of particular AM fungal phylotypes. We explored whether those phylotypes that appear exclusively in hypoxic soils are local specialists or widespread generalists able to tolerate a range of soil conditions. AM fungal community composition was characterized by cloning, restriction fragment length polymorphism typing, and the sequencing of small subunit rRNA genes from roots of four plant species growing at high (hypoxic) and low (control) geological CO2exposure. We found significant levels of AM fungal community turnover (β diversity) between soil types and the numerical dominance of two AM fungal phylotypes in hypoxic soils. Our results strongly suggest that direct environmental selection acting on AM fungi is a major factor regulating AM fungal communities and their phylogeographic patterns. Consequently, some AM fungi are more strongly associated with local variations in the soil environment than with their host plant's distribution.


2020 ◽  
Author(s):  
Yunfeng Han ◽  
Biao Zhu

&lt;p&gt;Arbuscular mycorrhizal (AM) fungi play many important roles in terrestrial ecosystems. The effects of increasing nitrogen (N) deposition on AM fungi will inevitably affect many important ecosystem processes. However, our quantitative understanding on the generalizable patterns of how N deposition affects AM fungi at the global scale remains unclear.&lt;/p&gt;&lt;p&gt;We conducted a meta-analysis of 431 observations from 111 publications to investigate the responses of AM fungi to N addition, including abundance, richness and diversity, and explored the mechanisms of N addition affecting AM fungi by trait-based guilds method.&lt;/p&gt;&lt;p&gt;Results showed that N addition had strong negative effects on AM fungal abundance and richness, and different AM fungal guilds showed different responses to N addition: the rhizophilic guild significantly decreased under N addition, while the edaphophilic guild increased (but with much variability) under N addition. Further analysis showed that N addition affects AM fungi mainly by causing soil acidification and increasing soil available N. Specifically, soil acidification had a negative effect on both the rhizophilic and edaphophilic AM fungi and increased soil available N mainly negatively affect the edaphophilic AM fungi. Moreover, the response of AM fungi to N addition was also affected by the shifts in plant carbon (C) allocation caused by soil phosphorus (P) availability.&lt;/p&gt;&lt;p&gt;This synthesis highlights that trait-based AM fungal guilds as well as taking soil P and C from host plants into consideration can improve our understanding of dynamics of AM fungal communities under increasing N deposition. This would further enable better predictions of the functional consequences of changes in AM fungal communities such as impacts on soil organic C dynamics, plant P uptake and plant diversity.&lt;/p&gt;


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Suzanne Donn ◽  
Sally Power ◽  
Kirk Barnett ◽  
Jeff Powell

Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterised arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem.


Sign in / Sign up

Export Citation Format

Share Document