scholarly journals Cyanide produced with ethylene by ACS and its incomplete detoxification by β-CAS in mango inflorescence leads to malformation

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mohammad Wahid Ansari ◽  
Shail Kaushik ◽  
Gurdeep Bains ◽  
Suresh Tula ◽  
Bhavana Joshi ◽  
...  

AbstractMalformation of mango inflorescences (MMI) disease causes severe economic losses worldwide. Present research investigates the underlying causes of MMI. Results revealed significantly higher levels of cyanide, a by-product of ethylene biosynthesis, in malformed inflorescences (MI) of mango cultivars. There was a significant rise in ACS transcripts, ACS enzyme activity and cyanide and ethylene levels in MI as compared to healthy inflorescences (HI). Significant differences in levels of methionine, phosphate, S-adenosyl-L-methionine, S-adenosyl-L-homocysteine, ascorbate and glutathione, and activities of dehydroascorbate reductase and glutathione reductase were seen in MI over HI. Further, a lower expression of β-cyanoalanine synthase (β-CAS) transcript was associated with decreased cellular β-CAS activity in MI, indicating accumulation of unmetabolized cyanide. TEM studies showed increased gum-resinosis and necrotic cell organelles, which might be attributed to unmetabolized cyanide. In field trials, increased malformed-necrotic-inflorescence (MNI) by spraying ethrel and decreased MNI by treating with ethylene inhibitors (silver and cobalt ions) further confirmed the involvement of cyanide in MMI. Implying a role for cyanide in MMI at the physiological and molecular level, this study will contribute to better understanding of the etiology of mango inflorescence malformation, and also help manipulate mango varieties genetically for resistance to malformation.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Jones ◽  
M. T. Fountain ◽  
C. S. Günther ◽  
P. E. Eady ◽  
M. R. Goddard

AbstractDrosophila suzukii flies cause economic losses to fruit crops globally. Previous work shows various Drosophila species are attracted to volatile metabolites produced by individual fruit associated yeast isolates, but fruits naturally harbour a rich diversity of yeast species. Here, we report the relative attractiveness of D. suzukii to yeasts presented individually or in combinations using laboratory preference tests and field trapping data. Laboratory trials revealed four of 12 single yeast isolates were attractive to D. suzukii, of which Metschnikowia pulcherrima and Hanseniaspora uvarum were also attractive in field trials. Four out of 10 yeast combinations involving Candida zemplinina, Pichia pijperi, M. pulcherrima and H. uvarum were attractive in the laboratory. Whilst a combination of M. pulcherrima + H. uvarum trapped the greatest number of D. suzukii in the field, the efficacy of the M. pulcherrima + H. uvarum combination to trap D. suzukii was not significantly greater than traps primed with volatiles from only H. uvarum. While volatiles from isolates of M. pulcherrima and H. uvarum show promise as baits for D. suzukii, further research is needed to ascertain how and why flies are attracted to certain baits to optimise control efficacy.


Plant Disease ◽  
2001 ◽  
Vol 85 (7) ◽  
pp. 718-722 ◽  
Author(s):  
Sebastian Kiewnick ◽  
Barry J. Jacobsen ◽  
Andrea Braun-Kiewnick ◽  
Joyce L. A. Eckhoff ◽  
Jerry W. Bergman

Rhizoctonia crown and root rot, caused by the fungus Rhizoctonia solani AG 2-2, is one of the most damaging sugar beet diseases worldwide and causes significant economic losses in more than 25% of the sugar beet production area in the United States. We report on field trials in the years 1996 to 1999 testing both experimental fungicides and antagonistic Bacillus sp. for their potential to reduce disease severity and increase sugar yield in trials inoculated with R. solani AG 2-2. Fungicides were applied as in-furrow sprays at planting or as band sprays directed at the crown at the four-leaf stage, or four- plus eight-leaf stage, while bacteria were applied at the four-leaf stage only. The fungicides azoxystrobin and tebuconazole reduced crown and root rot disease by 50 to 90% over 3 years when used at rates of 76 to 304 g a.i./ha and 250 g a.i./ha, respectively. The disease index at harvest was reduced and the root and sugar yield increased with azoxystrobin compared with tebuconazole. The combination of azoxystrobin applied at 76 g a.i./ha and the Bacillus isolate MSU-127 resulted in best disease reduction and greatest root and sucrose yield increase.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Anilkumar Gowda ◽  
Timothy J. Rydel ◽  
Andrew M. Wollacott ◽  
Robert S. Brown ◽  
Waseem Akbar ◽  
...  

Abstract Lygus species of plant-feeding insects have emerged as economically important pests of cotton in the United States. These species are not controlled by commercial Bacillus thuringiensis (Bt) cotton varieties resulting in economic losses and increased application of insecticide. Previously, a Bt crystal protein (Cry51Aa2) was reported with insecticidal activity against Lygus spp. However, transgenic cotton plants expressing this protein did not exhibit effective protection from Lygus feeding damage. Here we employ various optimization strategies, informed in part by protein crystallography and modelling, to identify limited amino-acid substitutions in Cry51Aa2 that increase insecticidal activity towards Lygus spp. by >200-fold. Transgenic cotton expressing the variant protein, Cry51Aa2.834_16, reduce populations of Lygus spp. up to 30-fold in whole-plant caged field trials. One transgenic event, designated MON88702, has been selected for further development of cotton varieties that could potentially reduce or eliminate insecticide application for control of Lygus and the associated environmental impacts.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1469
Author(s):  
Silke Deketelaere ◽  
Katrijn Spiessens ◽  
Sabien Pollet ◽  
Lien Tyvaert ◽  
Luc De Rooster ◽  
...  

Verticillium wilt is one of the most important diseases of cauliflower and can lead to serious economic losses. In this study, two complementary strategies were explored to employ the antagonistic capacity of Verticillium isaacii towards Verticillium wilt of cauliflower. The first strategy focused on introducing V. isaacii Vt305 by artificial inoculation of cauliflower plantlets at the nursery stage. Two inoculum types (spores and microsclerotia of V. isaacii Vt305) and different concentrations of microsclerotia were tested in greenhouse and field trials. Seed treatment with 500 microsclerotia seed−1 led to a satisfying biocontrol level of Verticillium wilt. In addition, the PHYTO-DRIP® system was successful in delivering the microsclerotia to cauliflower seeds. The second strategy relied on the stimulation of the natural V. isaacii populations by rotating cauliflower with green manures and potato. Four green manure crops and potato were tested during multiple field experiments. Although these crops seemed to stimulate the V. isaacii soil population, this increase did not result in a control effect on Verticillium wilt of cauliflower in the short term. Importantly, our results indicate that the use of green manures is compatible with the application of V. isaacii Vt305 as biocontrol agent of Verticillium wilt in cauliflower.


1999 ◽  
Vol 12 (12) ◽  
pp. 1082-1089 ◽  
Author(s):  
Samuel Duodu ◽  
T. V. Bhuvaneswari ◽  
Thomas J. W. Stokkermans ◽  
N. Kent Peters

Although Bradyrhizobium elkanii is a mutualistic symbiont of legumes, it synthesizes a phytotoxin, rhizobitoxine, that causes chlorosis on a variety of legume hosts, giving a pathogenic character to these interactions. No positive role for rhizobitoxine has been previously demonstrated. Interestingly, rhizobitoxine inhibits the rate-limiting step for ethylene biosynthesis, a plant hormone known to inhibit or down-regulate nodule development. We hypothesized that rhizobitoxine plays a positive role in nodule development through its inhibition of ethylene biosynthesis. To test this hypothesis, host plants of B. elkanii were screened for a differential nodulation response to the wild-type and rhizobitoxine mutant strains. In Vigna radiata (mungbean), the rhizobitoxine mutant strains induced many aborted nodules arrested at all stages of pre-emergent and post-emergent development and formed significantly fewer mature nodules than the wild type. Experiments revealed that nodulation of mungbean plants is sensitive to exogenous ethylene, and that the ethylene inhibitors aminoethoxyvinylglycine and Co2+ were able to partially restore a wild-type nodulation pattern to the rhizobitoxine mutants. This is the first demonstration of a nodulation phenotype of the rhizobitoxine mutants and suggests that rhizobitoxine plays a positive and necessary role in Rhizobium-legume symbiosis through its inhibition of ethylene biosynthesis.


2013 ◽  
Vol 64 (6) ◽  
pp. 573 ◽  
Author(s):  
X. L. Miao ◽  
Y. J. Zhang ◽  
X. C. Xia ◽  
Z. H. He ◽  
Y. Zhang ◽  
...  

Pre-harvest sprouting (PHS) in wheat severely reduces yield and end-use quality, resulting in substantial economic losses. The Chinese winter wheat line CA 0431, with white grain, showed high PHS resistance for many years. To identify quantitative trait loci (QTLs) of PHS resistance in this line, 220 F2 plants and the corresponding F2 : 3 lines derived from a cross between CA 0431 and the PHS-susceptible cultivar Zhongyou 206 were used for PHS testing and QTL analysis. Field trials were conducted in Beijing during the 2010–11 and 2011–12 cropping seasons, and in Anyang during 2011–12. PHS resistance was evaluated by assessing the sprouting responses of intact spikes. In total, 1444 molecular markers were used to screen the parents, and 31 markers with polymorphisms between the resistant and susceptible bulks were used to genotype the entire F2 population. Broad-sense heritability of sprouting rate was 0.71 across environments. Inclusive composite interval mapping identified four QTLs, QPhs.caas-2BL, QPhs.caas-3AS.1, QPhs.caas-3AS.2, and QPhs.caas-3AL, each explaining 2.8–27.7% of the phenotypic variance across environments. The QTLs QPhs.caas-3AS.1, QPhs.caas-3AS.2, and QPhs.caas-3AL were located at similar positions to QTLs reported previously, whereas QPhs.caas-2BL is likely a new QTL flanked by markers Xbarc1042 and Xmag3319. Line CA 0431 and the identified markers can be used in breeding programs targeting improvement of PHS resistance for white-kernel wheat.


2019 ◽  
pp. 539-545
Author(s):  
Vesna Krsteska

Helicoverpa armigera Hubner is а migratory, cosmopolitan and polycyclic species. The pest is known as tobacco bollworm or budworm. The species is polyphagous and is an economically important agricultural pest. The studies were conducted on tobacco plants in the Experimental Field of the Scientific Tobacco Institute - Prilep during 2017/2018. Monitoring of population dynamics of H. armigera was performed during tobacco vegetation in a 10 -day period, using the method of examining 100 tobacco plants, with Zig-Zag review of pest scouting. The collected larvae were additionally fed and grown in a laboratory according to the standard laboratory methodology. Field and laboratory trials were carried out for control of H. armigera, with five insecticides/ active ingredients: Spinetoram (a.i. 250 g/kg)- 0.3 kg/ha, Indoxacarb (a.i. 150 g/L)- 0.3 L/ha, Metaflumizone (a.i 240 g/L)- 1 L/ha; Emamectin (a.i. 9.5 g/kg)- 2 kg/ha and Flubendiamide (a.i. 480g/L)- 250 g/ha. Larvae of tobacco budworm damage flowers, seed capsules and top tobacco leaves. The population dynamics of H. armigera showed that the species was present on tobacco from the beginning of July (when plants produce flowers) until the end of tobacco vegetation. The population was the most numerous in August and reached its highest level of density on 20th August in both years. In field trials, were determined five predatory species that fed with young larvae of H. armigеrа: Chrysopa formosa (Neuroptera, Chrysopidae), Chrysopa perla (Neuroptera, Chrysopidae), Chrysopa carnea (Neuroptera, Chrysopidae), Coccinella septempunctata (Coleoptera, Coccinellidae) and Adonia variegata (Coleoptera, Coccinellidae). In the beginning of October on tobacco plants we found parasitized larvae of H. armigera. In laboratory conditions parasitized larvae ate less and ceased developing at their 4th stage- L4. In each parasitized larva was developed one parasite species of Hyposoter didymator (Hymenoptera, Ichneumonidae). H. didymator is endoparasitoid wasp, and it lives on host tissues. According to field and laboratory trials during 2017/2018, all applied insecticides showed high efficacy in H. armigera control. The highest average mortality of 100% was caused by insecticides: Spinetoram, Indoxacarb and Emamectin. Flubendiamide had 97.5% efficiency in control of this pest, and the insecticide Metaflumizone 95.0%. This pest represents a significant challenge to tobacco filed and it produces high economic losses of tobacco seed each year. For the control of H. armigera, it is required constant monitoring of the lifecycle of the pest. One part of management strategy is to study parasitoids, predators and microorganisms and use them against H. armigera. Chemical control is still the most reliable and economic way of protecting tobacco crop from tobacco bollworm.


2021 ◽  
Vol 11 ◽  
Author(s):  
Savio George Barreto ◽  
Stephen J. Pandol

The last decade has witnessed a significant rise in cancers in young adults. This spectrum of solid organ cancers occurring in individuals under the age of 40 years (some reports extending the age-group to <50 years) in whom aetiology of cancer cannot be traced back to pre-existing familial cancer syndromes, is referred to as termed young-, or early- onset cancers. The underlying causes for young-onset carcinogenesis have remained speculative. We recently proposed a hypothesis to explain the causation of this entity. We propose that the risk for young-onset cancer begins in the perinatal period as a result of the exposure of the foetus to stressors, including maternal malnutrition, smoking or alcohol, with the consequent epigenomic events triggered to help the foetus cope/adapt. Exposure to the same stressors, early in the life of that individual, facilitates a re-activation of these ‘responses designed to be protective’ but ultimately resulting in a loss of regulation at a metabolic and/or genetic level culminating in the evolution of the neoplastic process. In this manuscript, we will provide a rationale for this hypothesis and present evidence to further support it by clarifying the pathways involved, including elucidating a role for Acetyl-CoA and its effect on the epigenome. We present strategies and experimental models that can be used to test the hypothesis. We believe that a concerted effort by experts in different, but complementary fields, such as epidemiology, genetics, and epigenetics united towards the common goal of deciphering the underlying cause for young-onset cancers is the urgent need. Such efforts might serve to prove, or disprove, the presented hypothesis. However, the more important aim is to develop strategies to reverse the disturbing trend of the rise in young-onset cancers.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 503F-504 ◽  
Author(s):  
Wayne A. Mackay ◽  
Narendra Sankhla

Phlox paniculata `John Fanick' produces long lasting, dense terminal flower heads and has potential as a specialty cut flower. Quality and postharvest display life of cut flower heads depends primarily on ethylene-induced flower abscission, flower bud opening, and maintenance and development of flower color during vase life. Late events, such as flower and leaf senescence may also be detrimental to flower quality. In the control treatment, the initial red-pink and purple flower color changes to violet blue in 3 to 4 days, and may lose >50% of initial anthocyanins. Incorporating sucrose (SUC) in the vase solution not only maintained >75% of the initial floral pigments, but also promoted opening of additional flowers and anthocyanin development. Although both ethylene biosynthesis (AOA, ReTain, a.i. AVG) and action inhibitors (STS, 1-MCP) delayed flower abscission, STS and 1-MCP were relatively more effective than AOA and AVG. As in the control, newly opened flowers remained very small when treated with ethylene inhibitors, did not develop red-pink color, and exhibited only shades of violet blue color. Sucrose antagonized the effect of ethylene inhibitors. As such, the flowers in SUC+ethylene inhibitors treatments enlarged in size and developed a reddish-pink blue color. However, the flower quality in SUC alone was much superior than those in SUC+ethylene inhibitors. These results indicate that ethylene inhibitors, alone and in combination with SUC, were not of any additional value in improving postharvest performance and display life of cut phlox flower heads.


Sign in / Sign up

Export Citation Format

Share Document