scholarly journals Localized Dielectric Loss Heating in Dielectrophoresis Devices

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tae Joon Kwak ◽  
Imtiaz Hossen ◽  
Rashid Bashir ◽  
Woo-Jin Chang ◽  
Chung Hoon Lee

AbstractTemperature increases during dielectrophoresis (DEP) can affect the response of biological entities, and ignoring the effect can result in misleading analysis. The heating mechanism of a DEP device is typically considered to be the result of Joule heating and is overlooked without an appropriate analysis. Our experiment and analysis indicate that the heating mechanism is due to the dielectric loss (Debye relaxation). A temperature increase between interdigitated electrodes (IDEs) has been measured with an integrated micro temperature sensor between IDEs to be as high as 70 °C at 1.5 MHz with a 30 Vpp applied voltage to our ultra-low thermal mass DEP device. Analytical and numerical analysis of the power dissipation due to the dielectric loss are in good agreement with the experiment data.

2010 ◽  
Vol 13 (3) ◽  
pp. 78-87
Author(s):  
Hoai Cong Huynh

The numerical model is developed consisting of a 1D flow model and the morphological model to simulate the erosion due to the water overtopping. The step method is applied to solve the water surface on the slope and the finite difference method of the modified Lax Scheme is applied for bed change equation. The Meyer-Peter and Muller formulae is used to determine the bed load transport rate. The model is calibrated and verified based on the data in experiment. It is found that the computed results and experiment data are good agreement.


2019 ◽  
Vol 22 (2) ◽  
pp. 88-93
Author(s):  
Hamed Khanger Mina ◽  
Waleed K. Al-Ashtrai

This paper studies the effect of contact areas on the transient response of mechanical structures. Precisely, it investigates replacing the ordinary beam of a structure by two beams of half the thickness, which are joined by bolts. The response of these beams is controlled by adjusting the tightening of the connecting bolts and hence changing the magnitude of the induced frictional force between the two beams which affect the beams damping capacity. A cantilever of two beams joined together by bolts has been investigated numerically and experimentally. The numerical analysis was performed using ANSYS-Workbench version 17.2. A good agreement between the numerical and experimental results has been obtained. In general, results showed that the two beams vibrate independently when the bolts were loosed and the structure stiffness is about 20 N/m and the damping ratio is about 0.008. With increasing the bolts tightening, the stiffness and the damping ratio of the structure were also increased till they reach their maximum values when the tightening force equals to 8330 N, where the structure now has stiffness equals to 88 N/m and the damping ratio is about 0.062. Beyond this force value, increasing the bolts tightening has no effect on stiffness of the structure while the damping ratio is decreased until it returned to 0.008 when the bolts tightening becomes immense and the beams behave as one beam of double thickness.


2004 ◽  
Vol 19 (12) ◽  
pp. 3607-3613 ◽  
Author(s):  
H. Iikawa ◽  
M. Nakao ◽  
K. Izumi

Separation by implemented oxygen (SIMOX)(111) substrates have been formed by oxygen-ion (16O+) implantation into Si(111), showing that a so-called “dose-window” at 16O+-implantation into Si differs from Si(100) to Si(111). In SIMOX(100), an oxygen dose of 4 × 1017/cm2 into Si(100) is widely recognized as the dose-window when the acceleration energy is 180 keV. For the first time, our work shows that an oxygen dose of 5 × 1017/cm2 into Si(111) is the dose-window for the formation of SIMOX(111) substrates when the acceleration energy is 180 keV. The difference between dose-windows is caused by anisotropy of the crystal orientation during growth of the faceted buried SiO2. We also numerically analyzed the data at different oxidation velocities for each facet of the polyhedral SiO2 islands. Numerical analysis results show good agreement with the experimental data.


2006 ◽  
Vol 321-323 ◽  
pp. 451-454
Author(s):  
Joo Young Yoo ◽  
Sung Jin Song ◽  
Chang Hwan Kim ◽  
Hee Jun Jung ◽  
Young Hwan Choi ◽  
...  

In the present study, the synthetic signals from the combo tube are simulated by using commercial electromagnetic numerical analysis software which has been developed based on a volume integral method. A comparison of the simulated signals to the experiments is made for the verification of accuracy, and then evaluation of five deliberated single circumferential indication signals is performed to explore a possibility of using a numerical simulation as a practical calibration tool. The good agreement between the evaluation results for two cases (calibration done by experiments and calibration made by simulation) demonstrates such a high possibility.


Author(s):  
A. Andreini ◽  
C. Bianchini ◽  
A. Ceccherini ◽  
B. Facchini ◽  
L. Mangani ◽  
...  

A numerical analysis of two different effusion cooled plates, with a feasible arrangement for combustor liner application, is presented in this paper. Though having the same porosity and very shallow injection angle (17°), the first configuration presents a “conventional” circular drilling, while the other has “shaped” holes with such an elliptical cross-section that leads to a circular imprint on the cooled surface. Either geometries were the object of an experimental survey in which both adiabatic and overall effectiveness were measured. In order to compensate for the lack of detailed aerodynamic measurements, 3D CFD computations were performed for the two geometries. Steady state RANS calculations were carried out using a k–ε Two Layer turbulence model, both in the standard isotropic and in an algebraically corrected non isotropic version specifically tuned to better predict the lateral spreading of jets in a cross flow. Flow characteristic reproduce typical effusion cooled combustor liner conditions with blowing ratio of 5 and coolant jet Reynolds number of 12500. Even though good agreement could not be obtained comparing thermal adiabatic effectiveness with experiments, the findings of the experiments regarding the rating of the cooling efficiency of the two configurations were confirmed. Additionally, conjugate simulations were performed for the circular hole geometry in order to quantify heat transfer effects and to directly compare them with raw experimental overall effectiveness data.


Author(s):  
Taehoon Kim ◽  
Sukyoung Pak ◽  
Yongjin Cho

During a severe accident, contact of the molten corium with the coolant water may cause an energetic steam explosion which is a rapid increase of explosive vaporization by transfer to the water of a significant part of the energy in the corium melt. This steam explosion has been considered as an adverse effect when the water is used to cool the molten corium and could threaten reactor vessel, reactor cavity, containment integrity. In this study, TROI TS-2 and TS-3 experiments as part of the OECD/SERENA-2 project were analyzed with TEXAS-V. Input parameters were based on actual TROI experiment data. In mixing simulations, calculated results were compared to melt front behavior, void fraction in trigger time and other parameters in experiment results. In explosion simulations, corresponding to TROI experiments an external triggering was employed at the moment that melt front reached heights of 0.4 m. Calculated results of peak pressure and impulse at the bottom were compared with TROI experiment results. Melt front behaviors of the melt was different from the experimental results in both TS-2 and TS-3. Void fraction in triggering time in TS-2 was in good agreement with the experiment results and in TS-3 was slightly overestimated. The peak pressure and impulse at bottom were successfully predicted by TEXAS-V. These calculations will allow establishing whether the limitations and differences observed in the simulations of the experiments are important for the reactor case.


1982 ◽  
Vol 37 (2) ◽  
pp. 102-112
Author(s):  
G. Klages ◽  
E. Wieczorek

Abstract The dielectric loss of very diluted solutions of four aromatic and three aliphatic amines in three non polar aliphatic solvents at 20 °C has been measured. The wave numbers cover 0.1 to 200 cm-1 . It is shown, how to analyse the microwave spectra of the loss factor ε″ in terms of three absorption areas, two of Debye relaxation type and the high frequency one of Lorentz resonance type. To limit the latter at its high frequency side, the extinction coefficient a has been used to determine and separate the lowest molecular resonances. From the analysis, dispersion steps and the components of the dipole moment due to the three absorption regions are calculated. Comparison with the so called optical dispersion step insures within the limits of experimental error that the absorption due to orientation of the permanent dipole moment is covered by the measured band. The long wave region belongs to the rotation of the molecules, the two others to intramolecular reorientation. In aromatic amines not all molecules of the sample are able to invert their NH2 group, but slower orientation by hindered inversion happens. On the other hand, in aliphatic amines the group is rotating and the high frequency region may be due to Foley absorption.


2001 ◽  
Author(s):  
Hooman Rezaei ◽  
Abraham Engeda ◽  
Paul Haley

Abstract The objective of this work was to perform numerical analysis of the flow inside a modified single stage CVHF 1280 Trane centrifugal compressor’s vaneless diffuser and volute. Gambit was utilized to read the casing geometry and generating the vaneless diffuser. An unstructured mesh was generated for the path from vaneless diffuser inlet to conic diffuser outlet. At the same time a meanline analysis was performed corresponding to speeds and mass flow rates of the experimental data in order to obtain the absolute velocity and flow angle leaving the impeller for those operating conditions. These values and experimental data were used as inlet and outlet boundary conditions for the simulations. Simulations were performed in Fluent 5.0 for three speeds of 2000, 3000 and 3497 RPM and mass flow rates of minimum, medium and maximum. Results are in good agreement with the experimental ones and present the flow structures inside the vaneless diffuser and volute.


1999 ◽  
Author(s):  
Katsumi Hisano ◽  
Hideo Iwasaki ◽  
Masaru Ishizuka ◽  
Tetsuya Yamane

Abstract Numerical analysis was carried out to evaluate the temperature rise and charge retention of Ni-MH batteries as pallet loads. In this paper, thermal analysis of pallet loads which contain 2400 mAh Ni-MH batteries is considered as a test case. To reduce computational load, thermal analysis was performed in three stages. Measured and calculated temperature rise of the load showed good agreement, and it can be observed that there exists an appropriate charge retention of the battery to sustain high retention during transportation.


Sign in / Sign up

Export Citation Format

Share Document