scholarly journals Assessment of Risk and Resilience of Terrestrial Ecosystem Productivity under the Influence of Extreme Climatic Conditions over India

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Srinidhi Jha ◽  
Jew Das ◽  
Manish Kumar Goyal

AbstractAnalysing the link between terrestrial ecosystem productivity (i.e., Net Primary Productivity: NPP) and extreme climate conditions is vital in the context of increasing threats due to climate change. To reveal the impact of changing extreme conditions on NPP, a copula-based probabilistic model was developed, and the study was carried out over 25 river basins and 10 vegetation types of India. Further, the resiliency of the terrestrial ecosystems to sustain the extreme disturbances was evaluated at annual scale, monsoon, and non-monsoon seasons. The results showed, 15 out of 25 river basins were at high risks, and terrestrial ecosystems in only 5 river basins were resilient to extreme climatic conditions. Moreover, at least 50% area under 4 out of 10 vegetation cover types was found to be facing high chances of a drastic reduction in NPP, and 8 out of 10 vegetation cover types were non-resilient with the changing extreme climate conditions.

2020 ◽  
Author(s):  
Dominik L. Schumacher ◽  
Jessica Keune ◽  
Diego G. Miralles

<p>Terrestrial ecosystems play a key role in climate by dampening the increasing atmospheric CO<sub>2</sub> concentrations primarily caused by anthropogenic fossil fuel emissions. The capability of the land biosphere to act as a carbon sink largely depends on climate conditions, which determine the energy and water availability required by plants to grow. Even though only a small part of the global land area is covered by vegetation, the impact of extreme dry and wet seasons has been shown to largely drive the global interannual variability of gross primary production. The climate in a certain area can be seen as the balance of different heat and moisture fluxes: local surface–atmosphere fluxes from below, entrainment of heat and moisture from aloft, and ‘horizontal’ advection of heat and moisture from upwind regions. The latter provides a mechanism for remote regions to impact gross primary production downwind, and has received less scientific attention. Here, advection is inferred from a bird’s eye perspective, focussing on the five ecoregions with the largest interannual variability in peak productivity around the globe. Employing the atmospheric Lagrangian trajectory model FLEXPART, driven by ERA-Interim reanalysis data, we track the air residing over ecoregions back in time to deduce the origins of heat and moisture that affect ecosystem gross primary production. Utilizing the evaporative source regions supplying water for precipitation to these ecosystems, as well as the analogous source regions of advected heat, we estimate the contribution of advection to gross primary production. Our findings show that source regions of heat and moisture are not congruent: upwind land surfaces typically supply most of the advected heat, whereas upwind oceans tend to provide more moisture. Moreover, low gross primary production in heat-stressed and water-limited ecosystems is often accompanied by enhanced heat and reduced moisture advection from land regions, exacerbated by upwind land–atmosphere feedbacks. These results demonstrate that anomalies in atmospheric advection can cause ecosystem productivity extremes. Particularly in light of ongoing climate change, we emphasize the potentially detrimental effects of upwind areas that may cause long-lasting impacts on the terrestrial carbon budget, thereby further affecting the climate.</p>


2018 ◽  
Vol 10 (10) ◽  
pp. 3753 ◽  
Author(s):  
Sakdirat Kaewunruen ◽  
Victor Martin

Significant increase in the demand for freight and passenger transports by trains pushes the railway authorities and train companies to increase the speed, the axle load and the number of train carriages/wagons. All of these actions increase ground-borne noise and vibrations that negatively affect people who work, stay, or reside nearby the railway lines. In order to mitigate these phenomena, many techniques have been developed and studied but there is a serious lack of life-cycle information regarding such the methods in order to make a well-informed and sustainable decision. The aim of this study is to evaluate the life-cycle performance of mitigation methods that can enhance sustainability and efficacy in the railway industry. The emphasis of this study is placed on new methods for ground-borne noise and vibration mitigation including metamaterials, geosynthetics, and ground improvement. To benchmark all of these methods, identical baseline assumptions and the life-cycle analysis over 50 years have been adopted where relevant. This study also evaluates and highlights the impact of extreme climate conditions on the life-cycle cost of each method. It is found that the anti-resonator method is the most expensive methods compared with the others whilst the use of geogrids (for subgrade stiffening) is relatively reliable when used in combination with ground improvements. The adverse climate has also played a significant role in all of the methods. However, it was found that sustainable methods, which are less sensitive to extreme climate, are associated with the applications of geosynthetic materials such as geogrids, composites, etc.


2021 ◽  
Vol 921 (1) ◽  
pp. 012049
Author(s):  
P Agustine ◽  
H Parung ◽  
P Davey ◽  
C Frid

Abstract Following an oil spill in the western Java Sea, in July 2019, the issue of oil pollution has received heightened interest. More and more people in Indonesia are increasingly aware that environmental damage will be a severe threat to the sustainability of ecosystems and environmental services. Given that oil pollution does endanger not only the aquatic ecosystem but also the surrounding terrestrial ecosystem, it is essential to encourage the involvement of stakeholders to contribute to efforts to prevent and minimize the impact of oil pollution in coastal areas that may arise in the future. Thus, since oil pollution is extremely harmful not only to aquatic ecosystems but also terrestrial ecosystems, coastal management strategies are urgently required to minimize the impact of oil pollution in the future. The overall aim of this research is to provide recommendations for policy formulations that may be adopted by the relevant local government to protect coastal areas from seawater contaminated with oil. This research uses both qualitative and quantitative approaches, including Statistical analysis, Strength-Weakness-Opportunity-Threat (SWOT) analysis and Analytical Hierarchy Process (AHP). The type of data collected will be primary data and secondary data which are sourced from experts and agencies engaged in the management of the coastal and marine environments.


2021 ◽  
Vol 29 (4) ◽  
pp. 49-60
Author(s):  
KeszeliovÁ Anita ◽  
HlavČovÁ Kamila ◽  
DanÁČovÁ Michaela ◽  
DanÁČovÁ Zuzana ◽  
Szolgay Ján

Abstract Due to a changing climate, likely changes to a hydrological regime are one of the primary sources of uncertainty to consider in managing water resources. In Slovakia, a decline in the country’s water resources, combined with a change in the seasonality of runoff and an increase in the extremeness of floods and droughts, represents a potential threat. The objective of the paper was to explore trends in the components of the long-term hydrological balance of various river basins to detect the impacts of changing climate conditions along the Western Carpathians. The proposed method is a comparative exploratory analysis of the hydrological balance of the selected river basins. Temporal changes in the catchments’ average air temperatures, precipitation, runoff, and their differences (considered as an index of the actual evapotranspiration), were estimated for 49 years of data; two non-overlapping sub-periods (25 and 24 years) in the seven river basins were also compared. This work also aims at evaluating the applicability of gridded inputs from the CarpatClim database for modelling the hydrological balance over an extended period. The results document the impact of the rising air temperature and, in part, local physiographic factors on the changes in runoff and actual catchment evapotranspiration.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jianguo Li ◽  
Chenxin Zou ◽  
Qiang Li ◽  
Xinyue Xu ◽  
Yanqing Zhao ◽  
...  

AbstractThe terrestrial ecosystem productivity and foundation of regional ecosystem services have been significantly influenced by recent urbanization processes. This study assesses the changes in terrestrial ecosystem productivity in Jiangsu from the years of 2000 to 2015 in response to the urbanization. A linear model that incorporates the traditional equalization method is proposed to improve the estimation accuracy of net primary productivity (NPP) loss. Results revealed that the land area of urban construction expanded rapidly during the research period to encompass an area of 8672.8 km2. The rate of expansion was highest during 2005–2010. Additionally, the expansion rate of urban construction land was considerably higher in southern Jiangsu compared to the northern areas. The NPP exhibited a rising tendency from the year of 2000 to 2015, and varied from 33.30 to 40.23 Tg C/y. It was higher in the central parts, which include the cities of Yancheng and Nantong. The increase in urban construction land has resulted in a significant reduction in the terrestrial ecosystem productivity, i.e. a cumulative NPP loss of 2.55–2.88 Tg C during the research period. The NPP losses due to the conversion from cropland to constrction land were the highest, followed by the wetland. The work in this paper indicates that the rate of future productivity losses in terrestrial ecosystem in northern Jiangsu would be faster than the southern areas.


2021 ◽  
Vol 13 (13) ◽  
pp. 2522
Author(s):  
Lkhagvadorj Nanzad ◽  
Jiahua Zhang ◽  
Battsetseg Tuvdendorj ◽  
Shanshan Yang ◽  
Sonam Rinzin ◽  
...  

Drought has devastating impacts on agriculture and other ecosystems, and its occurrence is expected to increase in the future. However, its spatiotemporal impacts on net primary productivity (NPP) in Mongolia have remained uncertain. Hence, this paper focuses on the impact of drought on NPP in Mongolia. The drought events in Mongolia during 2003–2018 were identified using the Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI). The Boreal Ecosystem Productivity Simulator (BEPS)-derived NPP was computed to assess changes in NPP during the 16 years, and the impacts of drought on the NPP of Mongolian terrestrial ecosystems was quantitatively analyzed. The results showed a slightly increasing trend of the growing season NPP during 2003–2018. However, a decreasing trend of NPP was observed during the six major drought events. A total of 60.55–87.75% of land in the entire country experienced drought, leading to a 75% drop in NPP. More specifically, NPP decline was prominent in severe drought areas than in mild and moderate drought areas. Moreover, this study revealed that drought had mostly affected the sparse vegetation NPP. In contrast, forest and shrubland were the least affected vegetation types.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2512
Author(s):  
Michał Musiał ◽  
Lech Lichołai

The article presents the results of multi-month field tests and numerical analyses describing the thermal functioning of mobile shading systems for building windows containing a phase-change heat accumulator. The experiments were conducted in the summer period with temperate climate conditions in Rzeszów (Poland). The tested shading system was dedicated to the daily life cycle of residents, taking into account both the need to illuminate the rooms with natural light and reducing the undesirable overheating of the rooms in the summer. The obtained empirical results showed a reduction in room overheating in the summer period by 29.4% from composite windows with a phase-change heat accumulator and a mobile shading system as compared to the reference composite window with an analogous mobile shading system. The database of empirical results allowed for the creation and verification of a numerical model of heat conversion, storage and distribution within the composite window containing phase change material and a mobile shading system. The verified model made it possible to analyse the thermal functioning of the modified transparent partitions in cool temperate, temperate and subtropical climates. The article is a solution to the problem of undesirable overheating of transparent building partitions by efficient storage and distribution of solar radiation energy thanks to the use of a mobile shading system and a phase change material, while presenting a useful tool enabling the prediction of energy gains in different climatic conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sangam Shrestha ◽  
Deg-Hyo Bae ◽  
Panha Hok ◽  
Suwas Ghimire ◽  
Yadu Pokhrel

AbstractThe diverse impacts of anthropogenic climate change in the spatiotemporal distribution of global freshwater are generally addressed through global scale studies, which suffer from uncertainties arising from coarse spatial resolution. Multi-catchment, regional studies provide fine-grained details of these impacts but remain less explored. Here, we present a comprehensive analysis of climate change impacts on the hydrology of 19 river basins from different geographical and climatic conditions in South and Southeast Asia. We find that these two regions will get warmer (1.5 to 7.8 °C) and wetter (− 3.4 to 46.2%) with the expected increment in river flow (− 18.5 to 109%) at the end of the twenty-first century under climate change. An increase in seasonal hydro-climatic extremes in South Asia and the rising intensity of hydro-climatic extremes during only one season in Southeast Asia illustrates high spatiotemporal variability in the impact of climate change and augments the importance of similar studies on a larger scale for broader understanding.


Sign in / Sign up

Export Citation Format

Share Document