scholarly journals LINC00459 sponging miR-218 to elevate DKK3 inhibits proliferation and invasion in melanoma

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuhua Yang ◽  
Wenxian Xu ◽  
Zhuojun Zheng ◽  
Zhihai Cao

AbstractThe lncRNA biomarkers in melanoma remain to be further explored. The lncRNAs with different expression levels in melanoma tissue were identified by microarray analysis. To investigate the biological functions of target lncRNA, several in-vivo and in-vitro studies were performed. Potential mechanisms of competitive endogenous RNAs (ceRNAs) were predicted by using bioinformatics analysis and explored by western blot assay, fluorescence in situ hybridization assay, real-time quantitative PCR (RT-qPCR) array, RNA pull-down analysis, AGO2-RIP assay, and dual-luciferase reporter assay. The results demonstrated decreased LINC00459 in melanoma cell lines and tissues. According to the in-vitro and in-vivo experiments, up-regulated LINC00459 had inhibitory effect on cell proliferation and invasion. Bioinformatics analyses suggested that miR-218 could be a direct target of LINC00459. In addition, miR-218 was proved to be able to directly target the dickkopf-related protein 3 (DKK3) gene. In conclusion, our analysis suggested that the LINC00459 could sponge miR-218 and increase the expression of DKK3 gene, thus inhibiting the invasion and proliferation of melanoma cells, which indicated that the LINC00459 could be an effective biomarker for melanoma and its potential as the therapeutic target.

2021 ◽  
Vol 12 ◽  
Author(s):  
Kai Zhang ◽  
Zixiang Liu ◽  
Yingchuang Tang ◽  
Xiaofeng Shao ◽  
Xi Hua ◽  
...  

Chordoma is a relatively rare malignant bone tumor with high local recurrence. To date, the mechanism remains unclear. lncRNAs play a pivotal role in tumorigenesis by acting as competitive endogenous RNAs of microRNAs. However, the biological role of lncRNA is still unclear in chordoma. In this research, our aim is to investigate the roles and regulation mechanisms of lncRNA NONHSAT114552 in chordoma development. The expression level of NONHSAT114552 and miR-320d in chordoma tissues was determined by qRT-PCR. Meantime, the correlation between NONHSAT114552 and clinical prognosis was also studied. Bioinformatics analysis and luciferase reporter assays were used to verify the relationship between NONHSAT114552 and miR-320d, and between miR-320d and Neuropilin 1 (NRP1). In addition, effects of NONHSAT114552 on chordoma cells (U-CH1 and U-CH2) proliferation and invasion and its regulation on miR-320d were also evaluated. Furthermore, the influences of NONHSAT114552/miR-320d/NRP1 axis on chordoma tumorigenesis were investigated in vivo. NONHSAT114552 was overexpressed while miR-320d was down-regulated in chordoma tissue compared to fetal nucleus pulposus. Kaplan-Meier survival analysis showed that NONHSAT114552 overexpression was associated with patients’ poor prognosis. Knockdown of NONHSAT114552 significantly suppressed chordoma cell proliferation and invasion. In vitro studies confirmed that NONHSAT114552 acted as ceRNA to regulate NRP1 by directly sponging miR-320d, thus facilitating chordoma cell proliferation and invasion. In vivo study demonstrated that NONHSAT114552 moderated chordoma growth by sponging miR-320d to regulating NRP1. Our findings indicate that lncRNA NONHSAT114552 exhibits a critical role in the tumorigenesis and development of chordoma and it may become one potential prognostic marker and therapeutic target for this disease. .


2021 ◽  
Vol 11 ◽  
Author(s):  
Tao Ma ◽  
Yue Ma ◽  
Yongjun Du ◽  
Zhongheng Wei ◽  
Jianchu Wang ◽  
...  

Backgroundcirc0013958 was identified as a biomarker, which can be used for the diagnosis and screening of lung cancer. However, the role of circ0013958 in hepatocellular carcinoma (HCC) remains unclear.MethodsIn our study, quantitative real-time polymerase chain reaction was performed to determine the levels of circ0013958 in HCC tissues and cell lines. EdU, CCK-8, transwell, flow cytometry and tumorigenesis assays were applied to assess the functions of circ0013958 in HCC in vitro and in vivo. Western blot assay was to detect the expression of WEE1. Luciferase reporter assay, bioinformatics analysis and rescue experiments were used to examine the interaction among circ0013958, miR-532-3p and WEE1.ResultsIt revealed that circ0013958 was significantly up-regulated in HCC, which was positively correlated with poor prognosis of HCC patients. Circ0013958 promoted HCC cell proliferation and invasion, inhibited cell apoptosis in vitro, and promoted tumorigenesis in vivo. Circ0013958 acted as a miR-532-3p sponge to regulate WEE1 expression, thus promoting the progression of HCC.ConclusionsCirc0013958 promotes HCC progression through miR-532-3p/WEE1 axis. Circ0013958 may serve as a potential diagnostic biomarker and therapeutic target of HCC.


Author(s):  
Zhibin Liao ◽  
Hongwei Zhang ◽  
Chen Su ◽  
Furong Liu ◽  
Yachong Liu ◽  
...  

Abstract Background Aberrant expressions of long noncoding RNAs (lncRNAs) have been demonstrated to be related to the progress of HCC. The mechanisms that SNHG14 has participated in the development of HCC are obscure. Methods Quantitative real-time PCR (qRT-PCR) was used to measure the lncRNA, microRNA and mRNA expression level. Cell migration, invasion and proliferation ability were evaluated by transwell and CCK8 assays. The ceRNA regulatory mechanism of SNHG14 was evaluated by RNA immunoprecipitation (RIP) and dual luciferase reporter assay. Tumorigenesis mouse model was used to explore the roles of miR-876-5p in vivo. The protein levels of SSR2 were measured by western blot assay. Results In this study, we demonstrated that SNHG14 was highly expressed in HCC tissues, meanwhile, the elevated expression of SNHG14 predicted poor prognosis in patients with HCC. SNHG14 promoted proliferation and metastasis of HCC cells. We further revealed that SNHG14 functioned as a competing endogenous RNA (ceRNA) for miR-876-5p and that SSR2 was a downstream target of miR-876-5p in HCC. Transwell, CCK8 and animal experiments exhibited miR-876-5p inhibited HCC progression in vitro and in vivo. By conducting rescue experiments, we found the overexpression of SSR2 or knocking down the level of miR-876-5p could reverse the suppressive roles of SNHG14 depletion in HCC. Conclusion SNHG14 promotes HCC progress by acting as a sponge of miR-876-5p to regulate the expression of SSR2 in HCC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Immunohistochemical staining and qRT-PCR analysis were performed in human HCC sampels to study the clinical significance of KLF7, VPS35 and β-catenin. Results Firstly, KLF7 was highly expressed in human HCC samples and correlated with patients’ differentiation and metastasis status. KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Lastly, there was a positive correlation among KLF7, VPS35 and active-β-catenin in human HCC patients. Conclusion We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


2020 ◽  
Vol 15 (1) ◽  
pp. 871-883
Author(s):  
Jinshan Zhang ◽  
Dan Rao ◽  
Haibo Ma ◽  
Defeng Kong ◽  
Xiaoming Xu ◽  
...  

AbstractBackgroundOsteosarcoma is a common primary malignant bone cancer. Long noncoding RNA small nucleolar RNA host gene 15 (SNHG15) has been reported to play an oncogenic role in many cancers. Nevertheless, the role of SNHG15 in the doxorubicin (DXR) resistance of osteosarcoma cells has not been fully addressed.MethodsCell Counting Kit-8 assay was conducted to measure the half-maximal inhibitory concentration value of DXR in osteosarcoma cells. Western blotting was carried out to examine the levels of autophagy-related proteins and GDNF family receptor alpha-1 (GFRA1). Quantitative reverse transcription-polymerase chain reaction was performed to determine the levels of SNHG15, miR-381-3p, and GFRA1. The proliferation of osteosarcoma cells was measured by MTT assay. The binding sites between miR-381-3p and SNHG15 or GFRA1 were predicted by Starbase bioinformatics software, and the interaction was confirmed by dual-luciferase reporter assay. Murine xenograft model was established to validate the function of SNHG15 in vivo.ResultsAutophagy inhibitor 3-methyladenine sensitized DXR-resistant osteosarcoma cell lines to DXR. SNHG15 was upregulated in DXR-resistant osteosarcoma tissues and cell lines. SNHG15 knockdown inhibited the proliferation, DXR resistance, and autophagy of osteosarcoma cells. MiR-381-3p was a direct target of SNHG15, and GFRA1 bound to miR-381-3p in osteosarcoma cells. SNHG15 contributed to DXR resistance through the miR-381-3p/GFRA1 axis in vitro. SNHG15 depletion contributed to the inhibitory effect of DXR on osteosarcoma tumor growth through the miR-381-3p/GFRA1 axis in vivo.ConclusionsSNHG15 enhanced the DXR resistance of osteosarcoma cells through elevating the autophagy via targeting the miR-381-3p/GFRA1 axis. Restoration of miR-381-3p expression might be an underlying therapeutic strategy to overcome the DXR resistance of osteosarcoma.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Enhui Ma ◽  
Qianqian Wang ◽  
Jinhua Li ◽  
Xinqi Zhang ◽  
Zhenjia Guo ◽  
...  

Abstract Background Prostate cancer (PCa) is a kind of malignancy occurring in the prostate gland. Substantial researches have proved the major role of long noncoding RNAs (lncRNAs) in PCa. However, the role of long intergenic non-protein coding RNA 1006 (LINC01006) in PCa has not been investigated yet. Methods RT-qPCR was used to examine the expression levels of LINC01006 and its downstream targets. The function of LINC01006 in PCa was tested by in vitro and in vivo assays. With application of RNA pull down, RNA immunoprecipitation (RIP) and luciferase reporter assays, the interaction among LINC01006, miR-34a-5p and disheveled associated activator of morphogenesis 1 (DAAM1) were verified. Results LINC01006 expression presented high in PCa cell lines. LINC01006 silencing suppressed cell proliferative, migratory, invasive capacities while accelerated apoptotic rate. Besides, LINC01006 knockdown also suppressed tumor growth and metastasis in vivo. Furthermore, miR-34a-5p, a tumor suppressor in PCa, was sponged by LINC01006. Moreover, DAAM1 was targeted by miR-34a-5p and promoted PCa progression. More intriguingly, rescue assays suggested that the inhibitory effect of LINC01006 knockdown on PCa development was offset by DAAM1 overexpression. Conclusions LINC01006 promoted PCa progression by sponging miR-34a-5p to up-regulate DAAM1, providing a novel target for PCa therapy.


2019 ◽  
Vol 21 (10) ◽  
pp. 1284-1296 ◽  
Author(s):  
Shuai Zhang ◽  
Keman Liao ◽  
Zengli Miao ◽  
Qing Wang ◽  
Yifeng Miao ◽  
...  

Abstract Background Circular RNAs (circRNAs), a newly discovered type of endogenous noncoding RNA, have been proposed to mediate the progression of diverse types of tumors. Systematic studies of circRNAs have just begun, and the physiological roles of circRNAs remain largely unknown. Here, we focused on elucidating the potential role and molecular mechanism of circular forkhead box O3 (circFOXO3) in glioblastoma (GBM) progression. Methods First, we analyzed circFOXO3 alterations in GBM and noncancerous tissues through real-time quantitative reverse transcription PCR (qRT-PCR). Next, we used loss- and gain-of-function approaches to evaluate the effect of circFOXO3 on GBM cell proliferation and invasion. Mechanistically, fluorescent in situ hybridization, RNA pull-down, dual luciferase reporter, and RNA immunoprecipitation assays were performed to confirm the interaction between circFOXO3 and miR-138-5p/miR-432-5p in GBM. An animal model was used to verify the in vitro experimental findings. Results CircFOXO3 expression was significantly higher in GBM tissues than in noncancerous tissues. GBM cell proliferation and invasion were reduced by circFOXO3 knockdown and enhanced by circFOXO3 overexpression. Further biochemical analysis showed that circFOXO3 exerted its pro-tumorigenic activity by acting as a competing endogenous RNA (ceRNA) to increase expression of nuclear factor of activated T cells 5 (NFAT5) via sponging both miR-138-5p and miR-432-5p. Notably, tumor inhibition by circFOXO3 downregulation could be reversed by miR-138-5p/miR-432-5p inhibitors in GBM cells. Moreover, GBM cells with lower circFOXO3 expression developed less aggressive tumors in vivo. Conclusions Our data demonstrate that circFOXO3 can exert regulatory functions in GBM and that ceRNA-mediated microRNA sequestration might be a potential strategy for GBM therapy.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Ze-Tian Shen ◽  
Ying Chen ◽  
Gui-Chun Huang ◽  
Xi-Xu Zhu ◽  
Rui Wang ◽  
...  

Abstract Background Radiotherapy failure is a significant clinical challenge due to the development of resistance in the course of treatment. Therefore, it is necessary to further study the radiation resistance mechanism of HCC. In our early study, we have showed that the expression of Aurora-A mRNA was upregulated in HCC tissue samples or cells, and Aurora-A promoted the malignant phenotype of HCC cells. However, the effect of Aurora-A on the development of HCC radioresistance is not well known. Methods In this study, colony formation assay, MTT assays, flow cytometry assays, RT-PCR assays, Western blot, and tumor xenografts experiments were used to identify Aurora-A promotes the radioresistance of HCC cells by decreasing IR-induced apoptosis in vitro and in vivo. Dual-luciferase reporter assay, MTT assays, flow cytometry assays, and Western blot assay were performed to show the interactions of Aurora-A and NF-κB. Results We established radioresistance HCC cell lines (HepG2-R) and found that Aurora-A was significantly upregulated in those radioresistant HCC cells in comparison with their parental HCC cells. Knockdown of Aurora-A increased radiosensitivity of radioresistant HCC cells both in vivo and in vitro by enhancing irradiation-induced apoptosis, while upregulation of Aurora-A decreased radiosensitivity by reducing irradiation-induced apoptosis of parental cells. In addition, we have showed that Aurora-A could promote the expression of nuclear IkappaB-alpha (IκBα) protein while enhancing the activity of NF-kappaB (κB), thereby promoted expression of NF-κB pathway downstream effectors, including proteins (Mcl-1, Bcl-2, PARP, and caspase-3), all of which are associated with apoptosis. Conclusions Aurora-A reduces radiotherapy-induced apoptosis by activating NF-κB signaling, thereby contributing to HCC radioresistance. Our results provided the first evidence that Aurora-A was essential for radioresistance in HCC and targeting this molecular would be a potential strategy for radiosensitization in HCC.


2020 ◽  
Vol 26 (7) ◽  
pp. 532-548 ◽  
Author(s):  
Chunmei Mi ◽  
Bin Ye ◽  
Zhou Gao ◽  
Jinzhi Du ◽  
Ruizhen Li ◽  
...  

Abstract Pre-eclampsia (PE), which results from abnormal placentation, is a primary cause of maternal and neonatal morbidity and mortality. However, the causes of abnormal development of the placenta remain poorly understood. BHLHE40 is a transcriptional repressor in response to hypoxia. Bioinformatics analysis demonstrated that BHLHE40 negatively regulates miR-196a-5p expression, which may decrease miR-196a-5p to target SNX16. Since SNX16 exerts an inhibitory effect on cell migration, it may disrupt trophoblast cell migration in placentation. Therefore, the objective of this study was to explore a possible role of the BHLHE40/miR-196a-5p/SNX16 axis in PE pathogenesis. BHLHE40, miR-196a-5p and SNX16 mRNA and/or protein levels were detected in PE and normal placenta tissues. PE models in vitro and in vivo were constructed by culturing trophoblasts under hypoxia and reducing the uterine perfusion pressure in pregnant C57/BL6N mice, respectively. BHLHE40 and SNX16 were upregulated in PE placenta, while miR-196a-5p was downregulated. Knockdown of BHLHE40 reversed miR-196a-5p expression in trophoblasts under hypoxia, and upregulation of miR-196a-5p inhibited SNX16 expression. As indicated by ChIP assay, BHLHE40 bound to the promoter of the miR-196a-5p gene; luciferase reporter analysis showed that miR-196a-5p could bind to the 3ʹ-untranslated region of SNX16 mRNA. Knockdown of either BHLHE40 or SNX16, or an increase in miR-196a-5p, restored cell viability, migration, invasion and matrix metalloprotein (MMP)-2 and MMP-9 expression under hypoxia. BHLHE40 knockdown also alleviated PE symptoms in pregnant C57/BL6N mice. This study supports involvement of the BHLHE40/miR-196a-5p/SNX16 axis in PE pathogenesis; Proper adjustment of the BHLHE40/miR-196a-5p/SNX16 axis is able to attenuate PE symptoms.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ke Ren ◽  
Jinghui Sun ◽  
Lingling Liu ◽  
Yuping Yang ◽  
Honghui Li ◽  
...  

Non-small cell lung cancer (NSCLC) is the main type of lung cancer with high mortality worldwide. To improve NSCLC therapy, the exploration of molecular mechanisms involved in NSCLC progression and identification of their potential therapy targeting is important. Long noncoding RNAs (lncRNAs) have shown important roles in regulating various tumors progression, including NSCLC. We found lncRNA GHRLOS was decreased in NSCLC cell lines and tissues which correlated with poor prognosis of NSCLC patients. However, the role and underlying mechanisms of lncRNA GHRLOS in NSCLC progression remains elusive. The expression of lncRNA GHRLOS was examined in NSCLC cell lines and biopsy specimens of patients with NSCLC by quantitative real time polymerase chain reaction (qRT-PCR). The effects of GHRLOS on proliferation, invasion and apoptosis of NSCLC cells were determined by both in vitro and in vivo experiments. The interaction between GHRLOS and TP53 was determined by dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) combined with qRT-PCR analysis. RNA immunoprecipitation (RIP) was conducted to validate the binding between GHRLOS and microRNA-346 (miR-346). Dual-luciferase reporter assays were also carried out to reveal the interaction between miR-346 and the 3’ untranslated region (3’UTR) of adenomatous polyposis coli (APC) mRNA.Our data demonstrated that overexpression of lncRNA GHRLOS suppressed cancer cell proliferation and invasion as well as promoted cell apoptosis by regulating the expression of CDK2, PCNA, E-cadherin, N-cadherin, Bax, and Bcl-2 in NSCLC cells. Moreover, lncRNA GHRLOS was upregulated by the binding of TP53 to the GHRLOS promoter. The binding target of lncRNA GHRLOS was identified to be miR-346. Impressively, overexpression of miR-346 promoted cell proliferation and invasion, as well as inhibited cell apoptosis, however, these effects can be blocked by overexpression of lncRNA GHRLOS both in vitro and in vivo. In summary, this study reveals lncRNA GHRLOS, upregulated by TP53, acts as a molecule sponge of miR-346 to cooperatively modulates expression of APC, a miR-346 target, and potentially inhibits NSCLC progression via TP53/lncRNA GHRLOS/miR-346/APC axis, which represents a novel pathway that could be useful in targeted therapy against NSCLC.


Sign in / Sign up

Export Citation Format

Share Document