scholarly journals Coupled Charge Transfer Dynamics and Photoluminescence Quenching in Monolayer MoS2 Decorated with WS2 Quantum Dots

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Larionette P. L. Mawlong ◽  
Abhilasha Bora ◽  
P. K. Giri

AbstractHerein, we have investigated the tunability of the photoluminescence (PL) of the monolayer MoS2 (1L-MoS2) by decorating it with WS2 quantum dots (WS2 QD). The direct bandgap 1L-MoS2 and WS2 QDs are grown by chemical vapor deposition and liquid exfoliation methods, respectively. The room temperature PL spectrum of bare 1L-MoS2 is systematically quenched with its decoration with WS2 QDs at different concentrations. A decrease in the work function of 1L-MoS2 with the decoration of WS2 QDs was established from the Kelvin probe force microscopy analysis. A detailed quantitative analysis using the four-energy level model involving coupled charge transfer was employed to explain the redshift and the systematic decrease in the intensity of the PL peak in 1L-MoS2/WS2 QD heterostructure. The modulation of the PL in the heterostructure is attributed to the increase in the formation of negative trions through the charge transfer from WS2 QD to the 1L-MoS2 and thus making the 1L-MoS2 heavily n-type doped, with increase in the electron density by ~1.5 × 1013 cm−2. This study establishes the contribution of defects in the coupled charge transfer dynamics in 1L-MoS2, and it lays out a convenient strategy to manipulate the optical and electrical properties of 1L-MoS2 for various optoelectronic applications.

Nano Letters ◽  
2007 ◽  
Vol 7 (7) ◽  
pp. 2089-2093 ◽  
Author(s):  
S. Shusterman ◽  
A. Raizman ◽  
A. Sher ◽  
Y. Paltiel ◽  
A. Schwarzman ◽  
...  

Author(s):  
Alessandro Iagatti ◽  
Luigi Tarpani ◽  
Eleonora Fiacchi ◽  
Laura Bussotti ◽  
Loredana Latterini ◽  
...  

2007 ◽  
Vol 2 (2) ◽  
pp. 81-84
Author(s):  
S. N. M. Mestanza ◽  
I. Doi ◽  
N. C. Frateschi

Germanium quantum dots (Ge-QD) were grown by Low Pressure Chemical Vapor Deposition (LPCVD) on Si nucleus previously grown on 3 nm thick SiO2 ultra thin film. Samples were analyzed by atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). We report the analysis of the influence of the nucleation parameters on size and spatial distribution of Ge-QD. AFM images show a Ge-QD density of around 3.6x1010 cm-2, with an 11 nm mean size and 2.9 nm height. Finally, HRTEM investigation shows that the Ge-QD have a crystalline structure, i.e., they are nanocrystals.


2012 ◽  
Vol 2 (1) ◽  
pp. 1
Author(s):  
Didik Aryanto ◽  
Zulkafli Othaman ◽  
Abd. Khamim Ismail

Self-assembled In0.5Ga0.5As quantum dots (QDs) were grown using metal-organic chemical vapor deposition (MOCVD) on GaAs (100) substrate with different number of stacking QDs layers. Surface study using atomic force microscopy (AFM) shows that surface morphology of the self-assembled QDs change with different number of stacking QDs layers caused by the previous QDs layers and the thickness of the GaAs spacer layers. PL measurement shows variation in the PL spectra as a function of number of stacking layers of In0.5Ga0.5As QDs. The PL peak positions blue-shifted from 1225 nm to 1095 nm and dramatically increase in intensity with increasing number of stacking QDs layers.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 602 ◽  
Author(s):  
Massimo Calovi ◽  
Stefano Rossi ◽  
Flavio Deflorian ◽  
Sandra Dirè ◽  
Riccardo Ceccato ◽  
...  

This study aims to demonstrate the excellent protective performance of functionalized graphene oxide (fGO) flakes in acrylic cataphoretic coatings. The filler content provides an important contribution in improving the chemical and mechanical resistance of the acrylic matrix. The morphology of the fillers was first investigated by optical and electron microscopy, analysing the distribution of the fGO flakes within the polymer matrix. After that, the flakes were added to the cataphoretic bath in different concentrations, resulting in four series of samples. The cathodic delamination of the coatings was assessed with cathodic polarization cycles and with measurements carried out with a scanning Kelvin probe. Finally, the abrasion resistance at the macroscopic and microscopic level was studied by scrub testing and scratching atomic force microscopy analysis, respectively. The incorporation of fGO at the optimized concentration of 0.2 wt.% greatly increases the cathodic delamination resistance of the acrylic matrix, resulting in an effective barrier against the effects of absorbed aggressive substances. Graphene-based fillers also enhance abrasion resistance, thanks to their high mechanical strength. Thus, this work demonstrates the great protective benefits that can be obtained when using fGO flakes as reinforcing fillers in cataphoretic coatings.


2020 ◽  
Vol 7 (21) ◽  
pp. 2000835
Author(s):  
Subash Adhikari ◽  
Ji‐Hee Kim ◽  
Bumsub Song ◽  
Manh‐Ha Doan ◽  
Minh Dao Tran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document