scholarly journals Effective Schottky barrier lowering of NiGe/p-Ge(100) using Terbium interlayer structure for high performance p-type MOSFETs

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sunil Babu Eadi ◽  
Jeong Chan Lee ◽  
Hyeong-Sub Song ◽  
Jungwoo Oh ◽  
Ga-Won Lee ◽  
...  
1998 ◽  
Vol 34 (19) ◽  
pp. 1888 ◽  
Author(s):  
G. Höck ◽  
T. Hackbarth ◽  
U. Erben ◽  
E. Kohn ◽  
U. König
Keyword(s):  

2019 ◽  
Vol 288 ◽  
pp. 104-112 ◽  
Author(s):  
Yanghai Gui ◽  
Lele Yang ◽  
Kuan Tian ◽  
Hongzhong Zhang ◽  
Shaoming Fang

2021 ◽  
pp. 2010303
Author(s):  
Ki‐Tae Kim ◽  
Hye‐Jin Jin ◽  
Wonjun Choi ◽  
Yeonsu Jeong ◽  
Hyung Gon Shin ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Muhammad Naqi ◽  
Kyung Hwan Choi ◽  
Hocheon Yoo ◽  
Sudong Chae ◽  
Bum Jun Kim ◽  
...  

AbstractLow-temperature-processed semiconductors are an emerging need for next-generation scalable electronics, and these semiconductors need to feature large-area fabrication, solution processability, high electrical performance, and wide spectral optical absorption properties. Although various strategies of low-temperature-processed n-type semiconductors have been achieved, the development of high-performance p-type semiconductors at low temperature is still limited. Here, we report a unique low-temperature-processed method to synthesize tellurium nanowire networks (Te-nanonets) over a scalable area for the fabrication of high-performance large-area p-type field-effect transistors (FETs) with uniform and stable electrical and optical properties. Maximum mobility of 4.7 cm2/Vs, an on/off current ratio of 1 × 104, and a maximum transconductance of 2.18 µS are achieved. To further demonstrate the applicability of the proposed semiconductor, the electrical performance of a Te-nanonet-based transistor array of 42 devices is also measured, revealing stable and uniform results. Finally, to broaden the applicability of p-type Te-nanonet-based FETs, optical measurements are demonstrated over a wide spectral range, revealing an exceptionally uniform optical performance.


2021 ◽  
Author(s):  
Suman Yadav ◽  
Shivani Sharma ◽  
Satinder K Sharma ◽  
Chullikkattil P. Pradeep

Solution-processable organic semiconductors capable of functioning at low operating voltages (~5 V) are in demand for organic field-effect transistor (OFET) applications. Exploration of new classes of compounds as organic thin-film...


Author(s):  
Shazia Rashid ◽  
Faisal Bashir ◽  
Farooq A. Khanday ◽  
M. Rafiq Beigh

2021 ◽  
pp. 107048
Author(s):  
Tingting wang ◽  
Xiaobo Li ◽  
Taofei Pu ◽  
Shaoheng Cheng ◽  
Liuan Li ◽  
...  

Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 412 ◽  
Author(s):  
Evans Bernardin ◽  
Christopher Frewin ◽  
Richard Everly ◽  
Jawad Ul Hassan ◽  
Stephen Saddow

Intracortical neural interfaces (INI) have made impressive progress in recent years but still display questionable long-term reliability. Here, we report on the development and characterization of highly resilient monolithic silicon carbide (SiC) neural devices. SiC is a physically robust, biocompatible, and chemically inert semiconductor. The device support was micromachined from p-type SiC with conductors created from n-type SiC, simultaneously providing electrical isolation through the resulting p-n junction. Electrodes possessed geometric surface area (GSA) varying from 496 to 500 K μm2. Electrical characterization showed high-performance p-n diode behavior, with typical turn-on voltages of ~2.3 V and reverse bias leakage below 1 nArms. Current leakage between adjacent electrodes was ~7.5 nArms over a voltage range of −50 V to 50 V. The devices interacted electrochemically with a purely capacitive relationship at frequencies less than 10 kHz. Electrode impedance ranged from 675 ± 130 kΩ (GSA = 496 µm2) to 46.5 ± 4.80 kΩ (GSA = 500 K µm2). Since the all-SiC devices rely on the integration of only robust and highly compatible SiC material, they offer a promising solution to probe delamination and biological rejection associated with the use of multiple materials used in many current INI devices.


Sign in / Sign up

Export Citation Format

Share Document