scholarly journals Micronuclei in germ cells of hybrid frogs from Pelophylax esculentus complex contain gradually eliminated chromosomes

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
D. Dedukh ◽  
S. Riumin ◽  
M. Chmielewska ◽  
B. Rozenblut-Kościsty ◽  
K. Kolenda ◽  
...  

Abstract In most organisms, cells typically maintain genome integrity, as radical genome reorganization leads to dramatic consequences. However, certain organisms, ranging from unicellular ciliates to vertebrates, are able to selectively eliminate specific parts of their genome during certain stages of development. Moreover, partial or complete elimination of one of the parental genomes occurs in interspecies hybrids reproducing asexually. Although several examples of this phenomenon are known, the molecular and cellular processes involved in selective elimination of genetic material remain largely undescribed for the majority of such organisms. Here, we elucidate the process of selective genome elimination in water frog hybrids from the Pelophylax esculentus complex reproducing through hybridogenesis. Specifically, in the gonads of diploid and triploid hybrids, but not those of the parental species, we revealed micronuclei in the cytoplasm of germ cells. In each micronucleus, only one centromere was detected with antibodies against kinetochore proteins, suggesting that each micronucleus comprises a single chromosome. Using 3D-FISH with species-specific centromeric probe, we determined the role of micronuclei in selective genome elimination. We found that in triploid LLR hybrids, micronuclei preferentially contain P. ridibundus chromosomes, while in diploid hybrids, micronuclei preferentially contain P. lessonae chromosomes. The number of centromere signals in the nuclei suggested that germ cells were aneuploid until they eliminate the whole chromosomal set of one of the parental species. Furthermore, in diploid hybrids, misaligned P. lessonae chromosomes were observed during the metaphase stage of germ cells division, suggesting their possible elimination due to the inability to attach to the spindle and segregate properly. Additionally, we described gonocytes with an increased number of P. ridibundus centromeres, indicating duplication of the genetic material. We conclude that selective genome elimination from germ cells of diploid and triploid hybrids occurs via the gradual elimination of individual chromosomes of one of the parental genomes, which are enclosed within micronuclei.

2011 ◽  
Vol 48 (2) ◽  
pp. 108-115 ◽  
Author(s):  
M. Popiołek ◽  
B. Rozenblut-Kościsty ◽  
M. Kot ◽  
W. Nosal ◽  
M. Ogielska

AbstractParasitic fauna of water frogs was mainly studied in the second half of the 20th century. However, these studies were done without differentiation into species and hybrids and pooled the 3 taxa as “water frogs” or “green frogs”. The aim of this study was to make an inventory of helminth species as well as their prevalence and intensity of infection in the two parental species (Pelophylax ridibundus and P. lessonae) and the hybrid (P. esculentus) of water frogs from 3 big populations composed of hundreds or thousands of individuals inhabited natural and seminatural landscapes in Poland. Eight helminth species were found: Polystoma integerrimum, Diplodiscus subclavatus, Opisthoglyphe ranae, Gorgodera cygnoides, Haematoloechus variegatus, Oswaldocruzia filiformis, Cosmocerca ornata and Acanthocephalus ranae. The results were compared with data from other, polish and European studies. Additionally we compared the level of infection among water frog taxa.


1999 ◽  
Vol 20 (3) ◽  
pp. 251-263 ◽  
Author(s):  
Jolanta Bartmańska ◽  
Maria Ogielska

AbstractThe European water frog, Rana esculenta, is a hybrid whose genome is composed of haploid chromosome sets of its parental species R. lessonae and R. ridibunda. Prior to meiosis one of the parental sets is discarded and the other is duplicated (hybridogenesis). In the parental species sex differentiation begins at tadpole stages 28-30 (Gosner, 1960), at stages 30-36 the testes are composed of proliferating pale spermatogonia 1°. At stages 36-39 a new class of spermatogonia I° (dark) appears. Before first hibernation, seminiferous lobules are filled with cysts containing germ cells at various stages of spermatogenesis up to elongating spermatids. In R. esculenta gonad development is affected from the earliest stages: the gonads are smaller and composed of reduced number of spermatogonia I°. The phase of pale spermatogonia I° proliferation is prolonged up to the second year of life. The structure of the gonads, as well as that of germ cells themselves, are often abnormal.


2010 ◽  
Vol 31 (2) ◽  
pp. 239-250 ◽  
Author(s):  
Małgorzata Socha ◽  
Maria Ogielska

AbstractCentral European water frog Pelophylax esculentus (formerly known as Rana esculenta) is a natural hybrid between P. lessonae and P. ridibundus. The hybrids reproduce by hybridogenesis and usually share populations with one of the parental species. Natural ridibundus-esculentus (R-E) mixed populations are rare. The population described herein is composed of 80% P. ridibundus and 20% P. esculentus represented by both sexes. We analyzed 159 adults and 228 juveniles. Age of adults collected from breeding sites ranged from 2 to 6 years in males and from 3 to 7 years in females of both taxa. The percentage of individuals older than 5 years was low. Average age of P. ridibundus was higher than that of P. esculentus. In P. ridibundus the average age of females was higher than that of males. In P. esculentus the difference between ages of females and males was not significant. Measurements of yearly radial growth of long bones revealed that the frogs grew intensively before reaching sexual maturity (3 years for females and 2 years for males). In the group of juveniles before I hibernation, P. esculentus were significantly bigger than P. ridibundus, however, there was no difference in body size between both taxa after I hibernation i.e., before the start of a new growth season. Mean LAG-1 diameters were significantly greater in adults P. ridibundus than in juveniles after I hibernation, but not in P. esculentus.


2021 ◽  
Vol 118 (38) ◽  
pp. e2101242118
Author(s):  
Samina Naseeb ◽  
Federico Visinoni ◽  
Yue Hu ◽  
Alex J. Hinks Roberts ◽  
Agnieszka Maslowska ◽  
...  

Hybrids between species can harbor a combination of beneficial traits from each parent and may exhibit hybrid vigor, more readily adapting to new harsher environments. Interspecies hybrids are also sterile and therefore an evolutionary dead end unless fertility is restored, usually via auto-polyploidisation events. In the Saccharomyces genus, hybrids are readily found in nature and in industrial settings, where they have adapted to severe fermentative conditions. Due to their hybrid sterility, the development of new commercial yeast strains has so far been primarily conducted via selection methods rather than via further breeding. In this study, we overcame infertility by creating tetraploid intermediates of Saccharomyces interspecies hybrids to allow continuous multigenerational breeding. We incorporated nuclear and mitochondrial genetic diversity within each parental species, allowing for quantitative genetic analysis of traits exhibited by the hybrids and for nuclear–mitochondrial interactions to be assessed. Using pooled F12 generation segregants of different hybrids with extreme phenotype distributions, we identified quantitative trait loci (QTLs) for tolerance to high and low temperatures, high sugar concentration, high ethanol concentration, and acetic acid levels. We identified QTLs that are species specific, that are shared between species, as well as hybrid specific, in which the variants do not exhibit phenotypic differences in the original parental species. Moreover, we could distinguish between mitochondria-type–dependent and –independent traits. This study tackles the complexity of the genetic interactions and traits in hybrid species, bringing hybrids into the realm of full genetic analysis of diploid species, and paves the road for the biotechnological exploitation of yeast biodiversity.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1090
Author(s):  
Aleksandra Dunislawska ◽  
Maria Siwek ◽  
Katarzyna Stadnicka ◽  
Marek Bednarczyk

The Green-legged Partridgelike fowl is a native, dual-purpose Polish chicken. The White Leghorn has been intensively selected for several decades to mainly improve reproductive traits. Primordial germ cells (PGCs) represent the germline stem cells in chickens and are the only cells that can transfer the information stored in the genetic material from generation to generation. The aim of the study was to carry out a transcriptomic and an epigenetic comparison of the White Leghorn and Green-legged Partridgelike gonadal PGCs (gPGCs) at three developmental stages: days 4.5, 8, and 12 of the embryonic development. RNA and DNA were isolated from collected gPGCs. The RNA was further subjected to microarray analysis. An epigenetic analysis was performed based on the global methylation analysis and qMSP method for the particular silenced genes demonstrated in transcriptomic analysis. Statistically significant differences between the gPGCs from both breeds were detected on the day 8 of embryonic development. Global methylation analysis showed significant changes at the methylation level in the White Leghorn gPGCs on day 8 of embryonic development. The results suggest faster development of Green-legged Partridgelike embryos as compared to White Leghorn embryos. Changes in the levels of gene expression during embryonic development are determined by genetic and environmental factors, and this variability is influenced by breed and gender.


Science ◽  
1979 ◽  
Vol 205 (4403) ◽  
pp. 308-310 ◽  
Author(s):  
RH Myers ◽  
DA Shafer

The serendipitous mating of a male gibbon, Hylobates moloch, and a female siamang, Symphalangus syndactylus, has produced two female offspring born 1 year apart. The hybrid karyotype of 47 chromosomes comprises the haploid complements of the parental species, 22 for the gibbon and 25 for the siamang. Chromosomal G and C banding comparisons revealed no clear homologies between the parental karyotypes except for the single chromosome in each species containing the nucleolus organizer region. The lack of homology suggests that the structural rearrangement of chromosomes has played a major role in the process of speciation for these lesser apes.


2017 ◽  
Vol 107 (0) ◽  
Author(s):  
Andrea A. F. Mourão ◽  
Diogo Freitas-Souza ◽  
Diogo T. Hashimoto ◽  
Daniela C. Ferreira ◽  
Fernanda D. do Prado ◽  
...  

ABSTRACT The hybridization is a widely-discussed issue in several studies with fish species. For some authors, hybridization may be related with diversification and speciation of several groups, or also with the extinction of populations or species. Difficulties to differentiate species and hybrids may be a problem to correctly apply a management of wild species, because hybrid lineages, especially the advanced ones, may resemble the parental species. The genus Cichla Bloch & Schneider, 1801 constitutes an interesting experimental model, considering that hybridization and taxonomic uncertainties hinder a correct identification. Considering these problems, in this study, we developed genetic methodologies and applied meristic and morphometric approaches in wild samples in order to identify species and for test a possible hybridization between Cichla kelberi Kullander & Ferreira, 2006 and Cichla piquiti Kullander & Ferreira, 2006. For this, C. kelberi, C. piquiti and potential hybrid ( carijó) individuals were collected in Paraná and Tietê rivers (SP, Brazil). For meristic and morphometric methods, the individuals were analyzed using the statistical software Pcord 5:31, while for molecular methods, primers for PCR-multiplex were designed and enzyme for PCR-RFLP were selected, under the species-specific nucleotide. All results indicated that the carijó is not an interspecific hybrid, because it presented identical genetic pattern and morphology closed to C. piquiti. Thus, we propose that carijó is a C. piquiti morphotype. In addition, this study promotes a new molecular tool that could be used in future research, monitoring and management programs of the genus Cichla.


Genome ◽  
1990 ◽  
Vol 33 (5) ◽  
pp. 619-627 ◽  
Author(s):  
A. E. Vinogradov ◽  
L. J. Borkin ◽  
R. Günther ◽  
J. M. Rosanov

Cytological aspects of hemiclonal (meroclonal) inheritance in diploid and triploid males of the hybridogenetic frog Rana esculenta (Rana ridibunda × Rana lessonae) have been studied by DNA flow cytometry. The fact that the R. ridibunda genome contains 16% more DNA than the R. lessonae genome provides the ability to discern cells containing genomes of any species from the water-frog complex under study. Data are presented showing that elimination of the R. ridibunda genome occurs in hybridogenetic males from certain populations. In triploid males, the cytogenetic mechanism of hemiclonal inheritance is simpler than in diploids: after the elimination of a genome (always the genome in the minority in the triploid set; "homogenizing elimination"), no compensatory duplication of the remaining genetic material is necessary, as it is in diploids. The process of elimination can be visualized in triploid males by using DNA flow cytometry to identify cells in the special phase of the spermatogonial cell cycle that we termed the E phase.Key words: Rana esculenta, genome elimination, non-Mendelian inheritance, spermatogenesis, DNA flow cytometry.


2017 ◽  
Vol 295 ◽  
pp. 70-79
Author(s):  
Marta Gorzkiewicz ◽  
◽  
Małgorzata Grabowska ◽  
Tomasz Grzybowski ◽  
◽  
...  

The aim of the project was to develop a specific and at the same time economical method for detecting human blood in biological traces based on analysis of haemoglobin mRNA with use of PCR reaction in real time and non-specific SYBR Green detector. The test, which has eventually been developed enabled simultaneous analysis of melting curves for three fragments of various lengths: HBB61, HBA197 and HBB503, as well as an additional reference gene: mRNA β-actin. A definite identification was possible already for 0,1 μl of blood. The method is tissue and species specific. The analysed mRNA markers are characterized by high stability, as compared to haemoglobin detected by standard methods. The result of mRNA profiling shows the predictive value as regards quality of genetic material and occurrence of mixture of liquids. Results of analyses performed during the project indicate potential usefulness of HBB and HBA1 markers in routine forensic genetic examinations. However, it is necessary to carry out a broader spectrum of validation experiments, and particularly to analyse a larger number of actual biological casework and precisely determining an optimal quantity of RNA and identifying ontogenetic differences in the levels of expression.


2020 ◽  
Vol 41 (3) ◽  
pp. 361-371
Author(s):  
Adam Hermaniuk ◽  
Magdalena Czajkowska ◽  
Anetta Borkowska ◽  
Jan R.E. Taylor

Abstract In some populations, hybrids reproduce with a parental species by eliminating the genome of this species from their own germline and produce gametes that only contain the genome of the other parental species (sexual host). This mode of reproduction, known as hybridogenesis, leads to a conflict of interest between the two parties because the sexual host should avoid mating with the hybrid to prevent a reduction in reproductive success, whereas the hybrid depends on such matings for survival. We investigated European water frogs (Pelophylax esculentus complex), including hybrids (P. esculentus, genotype LR) and two sexual host species (P. lessonae, LL and P. ridibundus, RR). We hypothesized that to maximize fitness, hybrid males should be morphologically more similar to the sexual host that is preferred by females for successful reproduction. To test this hypothesis, we compared hybrid males in two different population types, L-E (hybrids coexist with LL) and L-E-R (hybrids coexist with both LL and RR). The latter was described in terms of genome composition, sex ratio, and mate choice preferences; the sex ratio of hybrids was significantly male-biased. We found that LR males from the L-E-R populations were significantly larger than those from the L-E, which makes them more similar to P. ridibundus, the largest species within the P. esculentus complex. We suggest that a larger body size of hybrid males may provide a reproductive advantage in the L-E-R population type, where the most common type of pair caught in the breeding season was LR males × RR females.


Sign in / Sign up

Export Citation Format

Share Document