scholarly journals Long-term application of fertilizer and manures affect P fractions in Mollisol

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xinchun Lu ◽  
Al-Kaisi Mahdi ◽  
Xiao-zeng Han ◽  
Xu Chen ◽  
Jun Yan ◽  
...  

Abstract Application of phosphorus (P), a major plant nutrient, as fertilizer is critical to maintain P level for crop production and yield in most cultivated soils. While, it may impact the dynamics, limited studies have examined the long-term effects of fertilization on P fractions in a soil profile in Mollisol. A long-term field experiment was conducted at the State Key Experimental Station of Agroecology of the Chinese Academy of Sciences in Hailun county, Heilongjiang Province, China. A sequential fractionation procedure was used to determine the effect of fertilizer (types) treatments including no fertilizer (CK), chemical fertilizer (NPK), chemical fertilizer plus straw (NPK + S) and pig manure (OM) on fractions of P and their distribution within 0–100 cm soil profiles. Unlike CK treatment, the long-term application of fertilizers increased the concentration and accumulation of total and available P in 0–20 and 0–40 cm soil depths than deeper soils, respectively. The phosphorus activity coefficient (PAC) ranged from 1.5 to 13.8% within 0–100 cm soil depth. The largest PAC value was observed under OM treatment at 0–40 cm soil depth and under NPK + S treatment at 40–100 cm soil depth. The Ca2-P and Ca8-P concentrations increased significantly by 0.5–7.5 times and 0.5–10.4 times, respectively in OM treatment with the largest value in 0–40 cm soil depth over CK treatment. The Al-P concentration under NPK + S and OM treatments increased throughout the soil profile. The OM treatment increased all Po concentrations in the 0–40 cm soil depth, while NPK and NPK + S treatments increased labile organic P, moderately labile organic P, and highly stable organic P in the 0–20 cm soil depth. Thus, the application of fertilizer and straw, or organic manure may enhance inorganic and organic P pool in a Mollisol in Northeast China. Thus, organic manure application in the subsoil as a potential P source and their impact should be considered in developing management practices and policies regarding nutrient management.

1987 ◽  
Vol 67 (1) ◽  
pp. 147-163 ◽  
Author(s):  
J. W. B. STEWART ◽  
I. P. O'HALLORAN ◽  
R. G. KACHANOSKI

Changes in soil phosphorus (P) forms, as determined by a sequential fractionation procedure, were used to assess the influence of soil texture and management practices on the forms and distribution of soil P in a Brown Chernozemic loam soil at Swift Current, Saskatchewan. Significant proportions of the variability of all P fractions except residual-P could be attributed to changes in sand content. Changes in the forms and distribution of soil P with decreasing sand content followed patterns similar to those associated with a weathering sequence. The proportion of total soil P in inorganic and organic extractable forms that were extractable sequentially with anion exchange resin (resin-Pi), sodium bicarbonate (bicarb-Pi and -Po), and sodium hydroxide (NaOH-Pi and -Po) increased with decreasing sand content. Acid-extractable inorganic P (HCl-Pi) was the only P fraction positively correlated with sand content. The presence of a crop increased the proportion of soil P present as the more labile organic-P fractions (bicarb-Po and NaOH-Po) but not as total soil organic P (soil-Po). The presence of a crop also increased the proportion of soil P present as the labile inorganic fractions (resin-Pi and bicarb-Pi), possibly due to a decrease in soil pH. Application of inorganic-P fertilizer caused significant increases in the proportion of soil P as these labile inorganic-P fractions (resin-Pi and bicarb-Pi) and as total soil organic-P (soil-Po), but did not affect the more labile organic-P fractions. Key words: P fractionation, labile P, organic P, inorganic P, texture, management practices


2019 ◽  
Vol 886 ◽  
pp. 3-7 ◽  
Author(s):  
Wutthikrai Kulsawat ◽  
Boonsom Porntepkasemsan ◽  
Phatchada Nochit

Paddy residues are the most generous agricultural biomass from the paddy cultivation, Paddy residues practices include crop residue amendment and in-situ burning. It indicated that residue amendment increased the organic carbon and nutrient contents in soil, However, an open residue burning is still a common practice in Thailand despite of strict law enforcements and proper education to farmers about its implications on soil, human and animal health The present study determined how residues management practices: residue amendment and stubble burning, influence the soil organic carbon by determining δ13C in paddy soil profile. The 30 cm depth soil samples from the naturally straw amendment and stubble burning paddy fields were collected in Chiang Khwan district, Roi-et province during 2017. The δ13C values with soil depth showed that residue management practices produce statistical differences in both soils. The δ13C values of soil samples from amendment and burning sites ranged from-23.19‰ to-17.98‰ and-24.79‰ to-19.28‰, respectively. Carbon isotopes differentiate clearly between amendment site (more positive values) and burning site (more negative values). The results from this study were in accordance with literatures which reported that the δ13C distribution in the soil profile can be applied to study in SOC dynamics as a result of different paddy residue management practices (amendment or burning). Further research is needed to confirm the validity of the stable carbon isotope technique in this type of studies.


2020 ◽  
Vol 158 (1-2) ◽  
pp. 65-79
Author(s):  
J. Macholdt ◽  
H.-P. Piepho ◽  
B. Honermeier ◽  
S. Perryman ◽  
A. Macdonald ◽  
...  

AbstractThe development of resilient cropping systems with high yield stability is becoming increasingly important due to future climatic and agronomic challenges. Consequently, it is essential to compare the effects of different agronomic management practices, such as cropping sequences and nutrient supply, on the stability of crop yields. Long-term experiments are a valuable resource for investigating these effects, as they provide enough time to accurately estimate stability parameters. The objective of the current study was to compare the effects of different cropping sequencing (#1: continuous v. rotational), fertilization (#2: mineral v. organic) and straw management techniques (in the case of continuous wheat; #3: removal v. incorporation) on the yield stability of winter wheat; yield risk (the probability of yield falling below a threshold yield level) and inter-annual yield variability were used as stability indicators of the effects. Long-term yield data from the Broadbalk Wheat Experiment (Rothamsted, UK) were analysed using a mixed model. Overall, the results showed that rotational cropping combined with sufficient mineral N fertilizer, with or without organic manure, ensured stable wheat yields while reducing yield risk. In contrast, higher yield risks and inter-annual yield variabilities were found in continuous wheat sections with less mineral N fertilizer or with organic manure only.


2007 ◽  
Vol 58 (1) ◽  
pp. 75 ◽  
Author(s):  
Carina Moeller ◽  
Mustafa Pala ◽  
Ahmad M. Manschadi ◽  
Holger Meinke ◽  
Joachim Sauerborn

Assessing the sustainability of crop and soil management practices in wheat-based rotations requires a well-tested model with the demonstrated ability to sensibly predict crop productivity and changes in the soil resource. The Agricultural Production Systems Simulator (APSIM) suite of models was parameterised and subsequently used to predict biomass production, yield, crop water and nitrogen (N) use, as well as long-term soil water and organic matter dynamics in wheat/chickpea systems at Tel Hadya, north-western Syria. The model satisfactorily simulated the productivity and water and N use of wheat and chickpea crops grown under different N and/or water supply levels in the 1998–99 and 1999–2000 experimental seasons. Analysis of soil-water dynamics showed that the 2-stage soil evaporation model in APSIM’s cascading water-balance module did not sufficiently explain the actual soil drying following crop harvest under conditions where unused water remained in the soil profile. This might have been related to evaporation from soil cracks in the montmorillonitic clay soil, a process not explicitly simulated by APSIM. Soil-water dynamics in wheat–fallow and wheat–chickpea rotations (1987–98) were nevertheless well simulated when the soil water content in 0–0.45 m soil depth was set to ‘air dry’ at the end of the growing season each year. The model satisfactorily simulated the amounts of NO3-N in the soil, whereas it underestimated the amounts of NH4-N. Ammonium fixation might be part of the soil mineral-N dynamics at the study site because montmorillonite is the major clay mineral. This process is not simulated by APSIM’s nitrogen module. APSIM was capable of predicting long-term trends (1985–98) in soil organic matter in wheat–fallow and wheat–chickpea rotations at Tel Hadya as reported in literature. Overall, results showed that the model is generic and mature enough to be extended to this set of environmental conditions and can therefore be applied to assess the sustainability of wheat–chickpea rotations at Tel Hadya.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256754
Author(s):  
Haiming Tang ◽  
Chao Li ◽  
Lihong Shi ◽  
Xiaoping Xiao ◽  
Kaikai Cheng ◽  
...  

Soil microorganism plays an important role in nitrogen (N) fixation process of paddy field, but the related information about how soil microorganism that drive N fixation process response to change of soil phy-chemical characteristics under the double-cropping rice (Oryza sativa L.) paddy field in southern of China is need to further study. Therefore, the impacts of 34-years different long-term fertilization system on soil N-fixing bacteria community under the double-cropping rice paddy field in southern of China were investigated by taken chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method in this paper. The field experiment were set up four different fertilizer treatments: chemical fertilizer alone (MF), rice straw and chemical fertilizer (RF), 30% organic manure and 70% chemical fertilizer (OM), and unfertilized as a control (CK). This results showed that compared with CK treatment, the diversity index of cbbLR and nifH genes with OM and RF treatments were significantly increased (p<0.05), respectively. Meanwhile, the abundance of cbbLR gene with OM, RF and MF treatments were increased by 23.94, 12.19 and 6.70×107 copies g-1 compared to CK treatment, respectively. Compared with CK treatment, the abundance of nifH gene with OM, RF and MF treatments were increased by 23.90, 8.82 and 5.40×109 copies g-1, respectively. This results indicated that compared with CK treatment, the soil autotrophic azotobacter and nitrogenase activities with OM and RF treatments were also significantly increased (p<0.05), respectively. There were an obvious difference in features of soil N-fixing bacteria community between application of inorganic fertilizer and organic manure treatments. Therefore, this results demonstrated that abundance of soil N-fixing bacteria community in the double-cropping rice paddy field were increased by long-term applied with organic manure and crop residue managements.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2229
Author(s):  
Wenzhu Yang ◽  
Yan Jiao ◽  
Mingde Yang ◽  
Huiyang Wen ◽  
Peng Gu ◽  
...  

Irrigation water is limiting for crop production in arid areas and application rates of fertilizers often exceed crop requirements, resulting in high accumulation of nitrate nitrogen (NO3−-N) in the soil. Management practices play a significant role in the leaching of NO3−-N. This experiment compares the effects of traditional furrow irrigation and sprinkler fertigation on the soil NO3−-N concentration trend throughout the cropping season in potato fields in China. Two irrigation systems that were fertilized, namely by furrow (NF-FI) and sprinkler fertigation (NF-SI), and two controlling without any fertilizer (C-FI and C-SI) were tested in the same experimental site for three consecutive years. Both the NF-FI soils and NF-SI soils with three replications and fertilizer applications of 273 kg N ha−1 exhibited a different trend of NO3−-N accumulation at different depths of soil profile. However, the magnitude of NO3−-N accumulation was low in the NF-SI soil profile. In NF-SI treatments, higher NO3−-N was observed at 20–40 cm soil layer. In the NF-FI, the concentration of the highest nitrate was observed at the 40–120 cm soil layer. The concentrations of NO3−-N in the fertilized soil were higher than those of the control soil for each irrigation system. Residual levels of NO3−-N in the soil depth of 40–120 cm from NF-FI were 1.54, 3.45 and 5.28 times higher than NF-SI after harvesting potatoes from 2015 to 2017. In NF-FI treatments, apparent nitrogen loss was 234.7, 237.5 and 276.7 kg ha−1 after harvesting potatoes in 2015, 2016 and 2017. Meanwhile, apparent nitrogen loss from NF-SI treatments was only 161.9, 132.1 and 148.9 kg ha−1, which was 31.0%, 44.4% and 46.2% lower than that of NF-FI in 2015, 2016 and 2017, respectively. The risk of NO3−-N leaching below the root zone from NF-FI was higher than that from NF-SI. It has been demonstrated that sprinkler fertigation can also be used as a tool for mitigating NO3−-N accumulation and apparent nitrogen loss.


2014 ◽  
Vol 36 (4) ◽  
pp. 359 ◽  
Author(s):  
D. E. Allen ◽  
P. M. Bloesch ◽  
R. A. Cowley ◽  
T. G. Orton ◽  
J. E. Payne ◽  
...  

Fire and grazing are commonplace in Australian tropical savannas and the effects of these management practices on soil organic carbon stocks (SOC) is not well understood. A long-term (20 years) experiment studying the effects of fire on a grazed semi-arid tropical savanna was used to increase this understanding. Treatments, including frequency of fire (every 2, 4 and 6 years), season of fire [early (June) vs late (October) dry season] and unburnt control plots, were imposed on Vertosol grassland and Calcarosol woodland sites, which were grazed. Additionally long-term enclosures [unburnt (except the Calcarosol in 2001) and ungrazed since 1973] on each soil type adjacent to each site were sampled, although not included in statistical analyses. SOC stocks were measured to a soil depth of 0.3 m using a wet oxidation method (to avoid interference by carbonates) and compared on an equivalent soil mass basis. Significant treatment differences in SOC stocks were tested for, while accounting for spatial background variation within each site. SOC stocks (0–0.3 m soil depth) ranged between 10.1 and 28.9 t ha–1 (Vertosol site) and 20.7 and 54.9 t ha–1 (Calcarosol site). There were no consistent effects of frequency or season of fire on SOC stocks, possibly reflecting the limited statistical power of the study and inherent spatial variability observed. Differences in the response to frequency and season of fire observed between these soils may have been due to differences in clay type, plant species composition and/or preferential grazing activity associated with fire management. There may also have been differences in C input between treatments and sites due to differences in the herbage mass and post-fire grazing activity on both sites and changed pasture composition, higher herbage fuel load, and a reduction in woody cover on the Vertosol site. This study demonstrated the importance of accounting for background spatial variability and treatment replication (in the absence of baseline values) when assessing SOC stocks in relation to management practices. Given the absence of baseline SOC values and the potentially long period required to obtain changes in SOC in rangelands, modelling of turnover of SOC in relation to background spatial variability would enable management scenarios to be considered in relation to landscape variation that may be unrelated to management. These considerations are important for reducing uncertainty in C-flux accounting and to provide accurate and cost-effective methods for land managers considering participation in the C economy.


Soil Research ◽  
1995 ◽  
Vol 33 (2) ◽  
pp. 311 ◽  
Author(s):  
A Paniagua ◽  
MJ Mazzarino ◽  
D Kass ◽  
L Szott ◽  
C Fernandez

The organic P pool is usually considered a major source of available P in high P-fixing soils of the tropics. Agricultural management practices which maintain or increase soil organic P(o) contents would, therefore, help maintain soil fertility over time. The effects of organic additions and P fertilization on soil P fractions and yield of maize were examined after a 10 years rotation involving beans and maize on a tropical volcanic soil. Five maize cropping systems were analysed: (1) monoculture, alley cropping with Erythrina poeppigiana, alley cropping with Gliricidia sepium and monoculture mulched with E. poeppigiana prunings, all treatments fertilized with 20 kg P ha-1 and 54 kg K ha-1; and (2) monoculture mulched with E. poeppigiana prunings without fertilization. Soil P fractions were determined by a sequential extraction procedure. Little differences were found in size and distribution of P pools among treatments fertilized with P regardless of whether they received organic amendments. Mulching without P fertilization showed the lowest values of NaOH-Po (16% v. 22% of total P) and labile Pi, (2.4% v. 4.8%). These results suggest that (1) organic P accretion and mineralization is strongly dependent on inorganic fertilization; and (2) organic additions without synthetic fertilizers may be decreasing the organic P pool, and consequently the soil P fertility. Nevertheless, absolute values of labile Pi (resin+NaHCO3-Pi were quite high (52 mg kg-1) in this treatment, and yields of maize were among the highest obtained during most of the 10 years of cultivation.


Author(s):  
AKINJIDE MOSES AFOLABI ◽  
JOSEPH IKECHUKWU MUOGHALU ◽  
EZEKIEL DARE OLOWOLAJU ◽  
FATIMOH OZAVIZE ADEMOH

Objectives: This study investigates nutrients stock and some soil indices of agro-ecosystem soil as affected by monoculture cropping system (cacao plantation). This was with a view to provide comprehensive understanding of soil nutrient dynamics in the ecosystems due to their different management practices. Methods: The study was carried out in 0.063 ha sample plots, three each in natural forests and cacao plantations adjacent to each other. In each plot, five core soil samples were randomly collected at two depths (0–15 and 15–30 cm), bulked according to depth, air-dried, sieved through 2 mm sieve, and analyzed for soil physicochemical properties using standard methods. One-way analysis of variance was used to test significant mean differences of the soil properties among cacao plantation and natural forest at probability level (p≤0.05) at different soil depth. Results: The results showed that soil physical properties such as particle size distribution, moisture contents, and bulk density; chemical properties such as pH, exchangeable cation, organic carbon, organic matter, phosphorus, and sulfur from natural forest were higher than the soil properties in cacao plantation for both top and subsoil. Soil indices such as soil structural stability index, base saturation percentage, and sodium adsorption ratio were higher in natural forest ecosystem than the soil indices of cacao plantation. Conclusion: From this study, it can be concluded that long-term monoculture cropping system had significant effect on nutrients stock and soil indices. This subsequently might result in permanent soil degradation and productivity.


Sign in / Sign up

Export Citation Format

Share Document