scholarly journals Whole transcriptome approach to evaluate the effect of aluminium hydroxide in ovine encephalon

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Endika Varela-Martínez ◽  
Martin Bilbao-Arribas ◽  
Naiara Abendaño ◽  
Javier Asín ◽  
Marta Pérez ◽  
...  

Abstract Aluminium hydroxide adjuvants are crucial for livestock and human vaccines. Few studies have analysed their effect on the central nervous system in vivo. In this work, lambs received three different treatments of parallel subcutaneous inoculations during 16 months with aluminium-containing commercial vaccines, an equivalent dose of aluminium hydroxide or mock injections. Brain samples were sequenced by RNA-seq and miRNA-seq for the expression analysis of mRNAs, long non-coding RNAs and microRNAs and three expression comparisons were made. Although few differentially expressed genes were identified, some dysregulated genes by aluminium hydroxide alone were linked to neurological functions, the lncRNA TUNA among them, or were enriched in mitochondrial energy metabolism related functions. In the same way, the miRNA expression was mainly disrupted by the adjuvant alone treatment. Some differentially expressed miRNAs had been previously linked to neurological diseases, oxidative stress and apoptosis. In brief, in this study aluminium hydroxide alone altered the transcriptome of the encephalon to a higher degree than commercial vaccines that present a milder effect. The expression changes in the animals inoculated with aluminium hydroxide suggest mitochondrial disfunction. Further research is needed to elucidate to which extent these changes could have pathological consequences.

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Emma L Robinson ◽  
Syed Haider ◽  
Hillary Hei ◽  
Richard T Lee ◽  
Roger S Foo

Heart failure comprises of clinically distinct inciting causes but a consistent pattern of change in myocardial gene expression supports the hypothesis that unifying biochemical mechanisms underlie disease progression. The recent RNA-seq revolution has enabled whole transcriptome profiling, using deep-sequencing technologies. Up to 70% of the genome is now known to be transcribed into RNA, a significant proportion of which is long non-coding RNAs (lncRNAs), defined as polyribonucleotides of ≥200 nucleotides. This project aims to discover whether the myocardium expression of lncRNAs changes in the failing heart. Paired end RNA-seq from a 300-400bp library of ‘stretched’ mouse myocyte total RNA was carried out to generate 76-mer sequence reads. Mechanically stretching myocytes with equibiaxial stretch apparatus mimics pathological hypertrophy in the heart. Transcripts were assembled and aligned to reference genome mm9 (UCSC), abundance determined and differential expression of novel transcripts and alternative splice variants were compared with that of control (non-stretched) mouse myocytes. Five novel transcripts have been identified in our RNA-seq that are differentially expressed in stretched myocytes compared with non-stretched. These are regions of the genome that are currently unannotated and potentially are transcribed into non-coding RNAs. Roles of known lncRNAs include control of gene expression, either by direct interaction with complementary regions of the genome or association with chromatin remodelling complexes which act on the epigenome.Changes in expression of genes which contribute to the deterioration of the failing heart could be due to the actions of these novel lncRNAs, immediately suggesting a target for new pharmaceuticals. Changes in the expression of these novel transcripts will be validated in a larger sample size of stretched myocytes vs non-stretched myocytes as well as in the hearts of transverse aortic constriction (TAC) mice vs Sham (surgical procedure without the aortic banding). In vivo investigations will then be carried out, using siLNA antisense technology to silence novel lncRNAs in mice.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 147
Author(s):  
Bingxin Li ◽  
Kaizhao Zhang ◽  
Yaqiong Ye ◽  
Jingjing Xing ◽  
Yingying Wu ◽  
...  

Thymic degeneration and regeneration are regulated by estrogen and androgen. Recent studies have found that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are involved in organ development. In this study, RNA sequencing (RNA-seq) results showed that ovariectomy significantly affected 333 lncRNAs, 51 miRNAs, and 144 mRNAs levels (p < 0.05 and |log2fold change| > 1), and orchiectomy significantly affected 165 lncRNAs, 165 miRNAs, and 208 mRNA levels in the thymus. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differentially expressed genes (DEGs) were closely related to cell development and immunity. Next, we constructed two lncRNA–miRNA–mRNA networks using Cytoscape based on the targeting relationship between differentially expressed miRNAs (DEMs) and DEGs and differentially expressed lncRNAs (DELs) analyzed by TargetScan and miRanda. Besides, we screened DEGs that were significantly enriched in GO and in ceRNA networks to verify their expression in thymocytes and thymic epithelial cells (TECs). In addition, we analyzed the promoter sequences of DEGs, and identified 25 causal transcription factors. Finally, we constructed transcription factor-miRNA-joint target gene networks. In conclusion, this study reveals the effects of estrogen and androgen on the expression of miRNAs, lncRNAs, and mRNAs in mice thymus, providing new insights into the regulation of thymic development by gonadal hormones and non-coding RNAs.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 464
Author(s):  
Xiaopeng An ◽  
Yue Zhang ◽  
Fu Li ◽  
Zhanhang Wang ◽  
Shaohua Yang ◽  
...  

Estrous cycle is one of the placental mammal characteristics after sexual maturity, including estrus stage (ES) and diestrus stage (DS). Estrous cycle is important in female physiology and its disorder may lead to diseases, such as polycystic ovary syndrome, ovarian carcinoma, anxiety, and epilepsy. In the latest years, effects of non-coding RNAs and messenger RNA (mRNA) on estrous cycle have started to arouse much concern, however, a whole transcriptome analysis among non-coding RNAs and mRNA has not been reported. Here, we report a whole transcriptome analysis of goat ovary in estrus and diestrus periods. Estrus synchronization was conducted to induce the estrus phase and on day 32, the goats shifted into the diestrus stage. The ovary RNA of estrus and diestrus stages was respectively collected to perform RNA-sequencing. Then, the circular RNA (circRNA), microRNA (miRNA), long non-coding RNA (lncRNA), and mRNA databases of goat ovary were acquired, and the differential expressions between estrus and diestrus stages were screened to construct circRNA-miRNA-mRNA/lncRNA and lncRNA-miRNA/mRNA networks, thus providing potential pathways that are involved in the regulation of estrous cycle. Differentially expressed mRNAs, such as MMP9, TIMP1, 3BHSD, and PTGIS, and differentially expressed miRNAs that play key roles in the regulation of estrous cycle, such as miR-21-3p, miR-202-3p, and miR-223-3p, were extracted from the network. Our data provided the miRNA, circRNA, lncRNA, and mRNA databases of goat ovary and each differentially expressed profile between ES and DS. Networks among differentially expressed miRNAs, circRNAs, lncRNAs, and mRNAs were constructed to provide valuable resources for the study of estrous cycle and related diseases.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1268
Author(s):  
Shengchao Zhang ◽  
Sibtain Ahmad ◽  
Yuxia Zhang ◽  
Guohua Hua ◽  
Jianming Yi

Enhanced plane of nutrition at pre-weaning stage can promote the development of mammary gland especially heifer calves. Although several genes are involved in this process, long intergenic non-coding RNAs (lincRNAs) are regarded as key regulators in the regulated network and are still largely unknown. We identified and characterized 534 putative lincRNAs based on the published RNA-seq data, including heifer calves in two groups: fed enhanced milk replacer (EH, 1.13 kg/day, including 28% crude protein, 25% fat) group and fed restricted milk replacer (R, 0.45 kg/day, including 20% crude protein, 20% fat) group. Sub-samples from the mammary parenchyma (PAR) and mammary fat pad (MFP) were harvested from heifer calves. According to the information of these lincRNAs’ quantitative trait loci (QTLs), the neighboring and co-expression genes were used to predict their function. By comparing EH vs R, 79 lincRNAs (61 upregulated, 18 downregulated) and 86 lincRNAs (54 upregulated, 32 downregulated) were differentially expressed in MFP and PAR, respectively. In MFP, some differentially expressed lincRNAs (DELs) are involved in lipid metabolism pathways, while, in PAR, among of DELs are involved in cell proliferation pathways. Taken together, this study explored the potential regulatory mechanism of lincRNAs in the mammary gland development of calves under different planes of nutrition.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Emilia Bagnicka ◽  
Ewelina Kawecka-Grochocka ◽  
Klaudia Pawlina-Tyszko ◽  
Magdalena Zalewska ◽  
Aleksandra Kapusta ◽  
...  

AbstractMicroRNAs (miRNAs) are short, non-coding RNAs, 21–23 nucleotides in length which are known to regulate biological processes that greatly impact immune system activity. The aim of the study was to compare the miRNA expression in non-infected (H) mammary gland parenchyma samples with that of glands infected with coagulase-positive staphylococci (CoPS) or coagulase-negative staphylococci (CoNS) using next-generation sequencing. The miRNA profile of the parenchyma was found to change during mastitis, with its profile depending on the type of pathogen. Comparing the CoPS and H groups, 256 known and 260 potentially new miRNAs were identified, including 32 that were differentially expressed (p ≤ 0.05), of which 27 were upregulated and 5 downregulated. Comparing the CoNS and H groups, 242 known and 171 new unique miRNAs were identified: 10 were upregulated (p ≤ 0.05), and 2 downregulated (p ≤ 0.05). In addition, comparing CoPS with H and CoNS with H, 5 Kyoto Encyclopedia of Genes and Genomes pathways were identified; in both comparisons, differentially-expressed miRNAs were associated with the bacterial invasion of epithelial cells and focal adhesion pathways. Four gene ontology terms were identified in each comparison, with 2 being common to both immune system processes and signal transduction. Our results indicate that miRNAs, especially miR-99 and miR-182, play an essential role in the epigenetic regulation of a range of cellular processes, including immunological systems bacterial growth in dendritic cells and disease pathogenesis (miR-99), DNA repair and tumor progression (miR-182).


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 397
Author(s):  
Dadong Deng ◽  
Xihong Tan ◽  
Kun Han ◽  
Ruimin Ren ◽  
Jianhua Cao ◽  
...  

The development of the placental fold, which increases the maternal–fetal interacting surface area, is of primary importance for the growth of the fetus throughout the whole pregnancy. However, the mechanisms involved remain to be fully elucidated. Increasing evidence has revealed that long non-coding RNAs (lncRNAs) are a new class of RNAs with regulatory functions and could be epigenetically regulated by histone modifications. In this study, 141 lncRNAs (including 73 up-regulated and 68 down-regulated lncRNAs) were identified to be differentially expressed in the placentas of pigs during the establishment and expanding stages of placental fold development. The differentially expressed lncRNAs and genes (DElncRNA-DEgene) co-expression network analysis revealed that these differentially expressed lncRNAs (DElncRNAs) were mainly enriched in pathways of cell adhesion, cytoskeleton organization, epithelial cell differentiation and angiogenesis, indicating that the DElncRNAs are related to the major events that occur during placental fold development. In addition, we integrated the RNA-seq (RNA sequencing) data with the ChIP-seq (chromatin immunoprecipitation sequencing) data of H3K4me3/H3K27ac produced from the placental samples of pigs from the two stages (gestational days 50 and 95). The analysis revealed that the changes in H3K4me3 and/or H3K27ac levels were significantly associated with the changes in the expression levels of 37 DElncRNAs. Furthermore, several H3K4me3/H3K27ac-lncRNAs were characterized to be significantly correlated with genes functionally related to placental development. Thus, this study provides new insights into understanding the mechanisms for the placental development of pigs.


2020 ◽  
Author(s):  
Yichuan Liu ◽  
Hui-Qi Qu ◽  
Xiao Chang ◽  
Lifeng Tian ◽  
Joseph Glessner ◽  
...  

AbstractSchizophrenia (SCZ) is a chronic and severely disabling neurodevelopmental disorder that affects people worldwide. RNA-seq has been a powerful method to detect the differentially expressed genes/non-coding RNAs in patients; however, due to overfitting problems differentially expressed targets (DETs) cannot be used properly as biomarkers. In this study, dorsolateral prefrontal cortex (dlpfc) RNA-seq data from 254 individuals’ was obtained from the CommonMind consortium and analyzed with machine learning methods, including random forest, forward feature selection (ffs), and factor analysis, to reduce the numbers of gene/non-coding RNA feature vectors to overcome overfitting problem and explore involved functional clusters. In 2-fold shuffle testing, the average predictive accuracy for SCZ patients was 67% based on coding genes, and the 96% based on long non-coding RNAs (lncRNAs). Coding genes were further clustered into 14 factors and lncRNAs were clustered into 45 factors to represent the underlying features. The largest contribution factor for coding genes contains number of genes critical in neurodevelopment and previously reported in relation with various brain disorders. Genomic loci of lncRNAs were more insightful, enriched for genes critical in synapse function (p=7.3E-3), cell junction (p=0.017), neuron differentiation (p=8.3E-3), phosphorylation (8.2E-4), and involving the Wnt signaling pathway (p=0.029). Taken together, machine learning is a powerful algorithm to reduce functional biomarkers in SCZ patients. The lncRNAs capture the characteristics of SCZ tissue more accurately than mRNA as the formers regulate every level of gene expression, not limited to mRNA levels.


2021 ◽  
Author(s):  
Xiaopeng An ◽  
Yue Zhang ◽  
Fu Li ◽  
Zhanhang Wang ◽  
Shaohua Yang ◽  
...  

Abstract BackgroundEstrous cycle is one of female characteristics after sexual maturity, including estrus (ES) and diestrus (DS) stages. Estrous cycle is important in female physiology and its disorder may lead to diseases. In the latest years, effects of non-coding RNAs and mRNA on estrous cycle start to arouse much concern, however, a whole transcriptome analysis among non-coding RNAs and mRNA has not been reported.ResultsHere we report a whole transcriptome analysis of goat ovary in estrus and diestrus periods. Estrus synchronization was conducted to induce the estrus phase and on day 32, the goats naturally shifted into diestrus stage. The ovary RNA of estrus and diestrus stages was respectively collected to perform RNA-sequencing. Then the circular RNA; microRNA; long non-coding RNA; mRNA databases of goat ovary were acquired, and the differentially expressions between estrus and diestrus stages were screened to construct circRNA-miRNA-mRNA/lncRNA and lncRNA-miRNA/mRNA networks, thus providing potential pathways that involved in the regulation of estrous cycle. Differentially expressed mRNAs, such as MMP9, TIMP1, 3BHSD and PTGIS, and differentially expressed microRNAs, such as miR-21-3p,miR-202-3p and miR-223-3p, which play key roles in estrous cycle regulation were extracted from the network.ConclusionsOur data provided the miRNA, circRNA, lncRNA and mRNA databases of goat ovary and each differentially expressed profile between ES and DS. Networks among differentially expressed miRNAs, circRNAs, lncRNAs and mRNAs were constructed to provide valuable resources for the study of estrous cycle and related diseases.


Animals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 119
Author(s):  
Yabin Pu ◽  
Yanli Zhang ◽  
Tian Zhang ◽  
Jianlin Han ◽  
Yuehui Ma ◽  
...  

As a nutrient sensor, the placenta plays a key role in regulating fetus growth and development. Long non-coding RNAs (lncRNAs) have been shown to regulate growth-related traits. However, the biological function of lncRNAs in horse placentas remains unclear. To compare the expression patterns of lncRNAs in the placentas of the Chinese Ningqiang (NQ) and Yili (YL) breeds, we performed a transcriptome analysis using RNA sequencing (RNA-seq) technology. NQ is a pony breed with an average adult height at the withers of less than 106 cm, whereas that of YL is around 148 cm. Based on 813 million high-quality reads and stringent quality control procedures, 3011 transcripts coding for 1464 placental lncRNAs were identified and mapped to the horse reference genome. We found 107 differentially expressed lncRNAs (DELs) between NQ and YL, including 68 up-regulated and 39 down-regulated DELs in YL. Six (TBX3, CACNA1F, EDN3, KAT5, ZNF281, TMED2, and TGFB1) out of the 233 genes targeted by DELs were identified as being involved in limb development, skeletal myoblast differentiation, and embryo development. Two DELs were predicted to target the TBX3 gene, which was found to be under strong selection and associated with small body size in the Chinese Debao pony breed. This finding suggests the potential functional significance of placental lncRNAs in regulating horse body size.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Candice P. Chu ◽  
Shiguang Liu ◽  
Wenping Song ◽  
Ethan Y. Xu ◽  
Mary B. Nabity

AbstractDogs with X-linked hereditary nephropathy (XLHN) are an animal model for Alport syndrome in humans and progressive chronic kidney disease (CKD). Using mRNA sequencing (mRNA-seq), we have characterized the gene expression profile affecting the progression of XLHN; however, the microRNA (miRNA, miR) expression remains unknown. With small RNA-seq and quantitative RT-PCR (qRT-PCR), we used 3 small RNA-seq analysis tools (QIAGEN OmicSoft Studio, miRDeep2, and CPSS 2.0) to profile differentially expressed renal miRNAs, top-ranked miRNA target genes, and enriched biological processes and pathways in CKD progression. Twenty-three kidney biopsies were collected from 5 dogs with XLHN and 4 age-matched, unaffected littermates at 3 clinical time points (T1: onset of proteinuria, T2: onset of azotemia, and T3: advanced azotemia). We identified up to 23 differentially expressed miRNAs at each clinical time point. Five miRNAs (miR-21, miR-146b, miR-802, miR-142, miR-147) were consistently upregulated in affected dogs. We identified miR-186 and miR-26b as effective reference miRNAs for qRT-PCR. This study applied small RNA-seq to identify differentially expressed miRNAs that might regulate critical pathways contributing to CKD progression in dogs with XLHN.


Sign in / Sign up

Export Citation Format

Share Document