scholarly journals Propolis nanoparticle enhances the potency of antimicrobial photodynamic therapy against Streptococcus mutans in a synergistic manner

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shima Afrasiabi ◽  
Maryam Pourhajibagher ◽  
Nasim Chiniforush ◽  
Abbas Bahador

Abstract Less invasive removal approaches have been recommended for deep caries lesions. Antimicrobial photodynamic therapy (aPDT) and propolis nanoparticle (PNP) are highlighted for the caries management plan. Evidence is lacking for an additive effect of combination PNP with photosensitizer (PS) in aPDT. This study aimed to investigate the individual and synergistic effects of chlorophyllin-phycocyanin mixture (PhotoActive+) and toluidine blue O (TBO) as PSs in combination with PNP in the aPDT process (aPDTplus) against major important virulence factors of Streptococcus mutans. Following characterization, biocompatibility of the PSs alone, or in combination with PNP were investigated on human gingival fibroblast cell. The in vitro synergy of PhotoActive+ or TBO and PNP was evaluated by the checkerboard method. The bacteria's virulence properties were surveyed in the presence of the PSs, individually as well as in combination. When the PSs were examined in combination (synergistic effect, FIC Index < 0.5), a stronger growth inhibitory activity was exhibited than the individual PSs. The biofilm formation, as well as genes involved in biofilm formation, showed greater suppression when the PSs were employed in combination. Overall, the results of this study suggest that the combination of PhotoActive+ or TBO with PNP with the least cytotoxicity effects and the highest antimicrobial activites would improve aPDT outcomes, leading to synergistic effects and impairing the virulence of S. mutans.

2020 ◽  
Vol 10 (12) ◽  
pp. 4290 ◽  
Author(s):  
Nasim Chiniforush ◽  
Maryam Pourhajibagher ◽  
Steven Parker ◽  
Stefano Benedicenti ◽  
Abbas Bahador ◽  
...  

The purpose of this study was to evaluate the in vitro effect of the chlorophyllin–phycocyanin mixture (Photoactive+) as a photosensitizer (PS) during antimicrobial photodynamic therapy (aPDT) on the count of Enterococcus faecalis (E. faecalis) using different light sources. The antimicrobial effect of aPDT with chlorophyllin–phycocyanin mixture using different light sources including diode laser (λ = 660 nm), diode laser (λ = 635 nm), LED (λ = 450 ± 30 nm) alone or in combination was assessed using microbial cell viability assay against E. faecalis. In addition, the cell cytotoxicity of Photoactive+ was assessed on human gingival fibroblast (HuGu) cells by MTT assay; E. faecalis growth when treated by both red wavelengths (635 nm, 660 nm) and combination of LED (420–480 nm) and red wavelengths (635 nm, 660 nm), significantly reduced compared to the control group (p < 0.05). There was no significant reduction in the number of viable cells exposed to Photoactive+ compared to the control group (p < 0.05). This study shows that the application of chlorophyllin–phycocyanin mixture and irradiation with emission of red light achieved a better result for bacterial count reduction, compared to a control. This component can be applied safely due to very negligible cytotoxicity.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Nagat Areid ◽  
Eva Söderling ◽  
Johanna Tanner ◽  
Ilkka Kangasniemi ◽  
Timo O. Närhi

Purpose. To explore earlyS. mutansbiofilm formation on hydrothermally induced nanoporous TiO2surfacesin vivoand to examine the effect of UV light activation on the biofilm development.Materials and Methods. Ti-6Al-4V titanium alloy discs (n = 40) were divided into four groups with different surface treatments: noncoated titanium alloy (NC); UV treated noncoated titanium alloy (UVNC); hydrothermally induced TiO2coating (HT); and UV treated titanium alloy with hydrothermally induced TiO2coating (UVHT).In vivoplaque formation was studied in 10 healthy, nonsmoking adult volunteers. Titanium discs were randomly distributed among the maxillary first and second molars. UV treatment was administered for 60 min immediately before attaching the discs in subjects’ molars. Plaque samples were collected 24h after the attachment of the specimens. Mutans streptococci (MS), non-mutans streptococci, and total facultative bacteria were cultured, and colonies were counted.Results. The plaque samples of NC (NC + UVNC) surfaces showed over 2 times more oftenS. mutanswhen compared to TiO2surfaces (HT + UVHT), with the number of colonized surfaces equal to 7 and 3, respectively.Conclusion. Thisin vivostudy suggested that HT TiO2surfaces, which we earlier showed to improve blood coagulation and encourage human gingival fibroblast attachmentin vitro, do not enhance salivary microbial (mostly mutans streptococci) adhesion and initial biofilm formation when compared with noncoated titanium alloy. UV light treatment provided Ti-6Al-4V surfaces with antibacterial properties and showed a trend towards less biofilm formation when compared with non-UV treated titanium surfaces.


1980 ◽  
Vol 15 (1) ◽  
pp. 53-70 ◽  
Author(s):  
George G. Rose ◽  
Toshihiko Yajima ◽  
Charles J. Mahan

1980 ◽  
Vol 15 (3) ◽  
pp. 267-287 ◽  
Author(s):  
Toshihiko Yajima ◽  
George G. Rose ◽  
Charles J. Mahan

2014 ◽  
Vol 49 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Sug-Joon Ahn ◽  
Soon-Nang Park ◽  
Young Ju Lee ◽  
Eun-Jung Cho ◽  
Yun Kyong Lim ◽  
...  

The objective of the study was to investigate the antimicrobial effects of purified single compounds from ethanol-extracted licorice root on Streptococcus mutans. The crude licorice root extract (CLE) was obtained from Glycyrrhiza uralensis, which was subjected to column chromatography to separate compounds. Purified compounds were identified by mass spectrometry and nuclear magnetic resonance. Antimicrobial activities of purified compounds from CLE were evaluated by determining the minimum inhibitory concentration and by performing time-kill kinetics. The inhibitory effects of the compounds on biofilm development were evaluated using crystal violet assay and confocal microscopy. Cell toxicity of substances to normal human gingival fibroblast (NHGF) cells was tested using a methyl thiazolyl tetrazolium assay. Chlorhexidine digluconate (CHX) was used in the control group. Three antimicrobial flavonoids, 1-methoxyficifolinol, licorisoflavan A, and 6,8-diprenylgenistein, were isolated from the CLE. We found that the three flavonoids and CHX had bactericidal effects on S. mutans UA159 at the concentration of ≥4 and ≥1 µg/ml, respectively. The purified compounds completely inhibited biofilm development of S. mutans UA159 at concentrations over 4 μg/ml, which was equivalent to 2 μg/ml of CHX. Confocal analysis showed that biofilms were sparsely scattered in the presence of over 4 μg/ml of the purified compounds. However, the three compounds purified from CLE showed less cytotoxic effects on NHGF cells than CHX at these biofilm-inhibitory concentrations. Our results suggest that purified flavonoids from CLE can be useful in developing oral hygiene products, such as gargling solutions and dentifrices for preventing dental caries.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shima Afrasiabi ◽  
Abbas Bahador ◽  
Alireza Partoazar

Abstract Background Biofilm formation is an important causative factor in the expansion of the carious lesions in the enamel. Hence, new approaches to efficient antibacterial agents are highly demanded. This study was conducted to evaluate the antimicrobial-biofilm activity of chitosan hydrogel (CS gel), zinc oxide/ zeolite nanocomposite (ZnONC) either separately or combined together [ZnONC / CS gel (ZnONC-CS)] against Streptococcus mutans biofilm. Results MTT assay demonstrated that the ZnONC-CS exhibits a non-cytotoxic effect (> 90% cell viability) toward human gingival fibroblast cells at different dosages (78.1–625 μg/mL) within 72 h. In comparison with CS gel and ZnONC, ZnONC-CS was superior at biofilm formation and metabolic activity reduction by 33 and 45%, respectively; (P < 0.05). The field emission scanning electron microscopy micrographs of the biofilms grown on the enamel slabs were largely in concordance with the quantitative biofilm assay results. Consistent with the reducing effect of ZnONC-CS on biofilm formation, the expression levels of gtfB, gtfC, and ftf significantly decreased. Conclusions Taken together, excellent compatibility coupled with an enhanced antimicrobial effect against S. mutans biofilm has equipped ZnONC-CS as a promising candidate for dental biofilm control.


2018 ◽  
Vol 773 ◽  
pp. 328-332
Author(s):  
Supaporn Mala ◽  
Sroisiri Thaweboon ◽  
Pipat Luksamijarukul ◽  
Boonyanit Thaweboon ◽  
Chayaporn Saranpuetti ◽  
...  

Streptococcus mutans is the most prevalent bacterial species isolated from the human oral cavity. Its ability to form biofilms is an important factor in the pathogenesis of dental caries. Thus, the search for new antimicrobial agents, especially from plants, has been intensified. Kaempferia parviflora has been the subject of research for many pharmacological and antimicrobial activities. In this study, we evaluated the effect of ethanolic extract of K. parviflora root (0.46, 0.94, 1.87, 3.75, 7.5, 15, and 30 mg/ml) on S. mutans KPSK2 biofilm formation using crystal violet assay. Cytotoxicity was determined according to 10993-5/2009 on human gingival fibroblast by MTT assay. The results showed that K. parviflora extract could inhibit biofilm formation to approximately 62-82% at the concentrations of 0.46-30 mg/ml. In the case of cytotoxicity, no cytotoxic potential was demonstrated at concentration of £ 7.5 mg/ml of K. parviflora. In conclusion, K. parviflora extract is a potentially useful anti-biofilm agent against caries-associated bacteria and could be used as adjunct to other caries preventive measures.


1978 ◽  
Vol 57 (11-12) ◽  
pp. 1003-1015 ◽  
Author(s):  
George G. Rose ◽  
Toshihiko Yajima ◽  
Charles J. Mahan

Using 16 human gingival fibroblast cell lines from patients with periodontitis, Dilantin hyperplasia, and nonpathological gingiva, a microscopic assay was developed to quantitate the cells' ability to lyse collagen substrates. The method employs tissue culture chambers with one cover slip partially coated with a thin layer of undenatured fibrillar bovine codlagen. The assay measures the relative numbers and sizes of holes in the collagen within defined regions of the cover slips effected by the phagocytotic and collagenolytic performance (PCP) of the population of fibroblasts growing on the cover slip for 5 days. The effect on the PCP index by serum, heparin, prostaglandins, and endotoxin was evaluated.


2020 ◽  
Vol 189 ◽  
pp. 02019
Author(s):  
Fahu Yuan ◽  
Li Liu ◽  
Wenxuan Yu ◽  
Beibei Zhu ◽  
Siyuan Sun ◽  
...  

Oral mucositis is a common and frequentoccurring disease and there is no effective treatment. In this study, we investigated the efficacy of polyphenolic extract from Artemisia selengensis Turcz (PPAST) in the prevention and treatment of oral mucositis. Cultured human gingival fibroblast cell HGF-1 was used as an in vitro experimental model to confirm the effect of PPAST inhibition of lipopolysaccharide(LPS) on cytotoxicity and its effect on the production of inflammatory cytokines. A rat model of oral ulcer was induced by acetic acid cauterization, and the curative effect of PPAST on oral ulcer was investigated from ulcer area and ulcer duration. PPAST significantly inhibited the toxic effect of LPS on HGF1 cells, improved the survival rate of HGF1 cells, and showed a concentration-dependent inhibition of TNF-α in HGF-1 cell. Treatment with PPAST reduced mucositis scores, promoted oral ulcer healing, and reduced plasma TNF-α levels in rats. Experimental data show that PPAST is safe and effective in the prevention and treatment of oral inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document