scholarly journals Genome-wide genetic diversity yields insights into genomic responses of candidate climate-selected loci in an Andean wetland plant

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Angéline Bertin ◽  
Mara I. Espinosa ◽  
Catalina A. Bustamante ◽  
Alejandra J. Troncoso ◽  
Nicolas Gouin

Abstract Assessing population evolutionary potential has become a central tenet of conservation biology. Since adaptive responses require allelic variation at functional genes, consensus has grown that genetic variation at genes under selection is a better surrogate for adaptive evolutionary potential than neutral genetic diversity. Although consistent with prevailing theory, this argument lacks empirical support and ignores recent theoretical advances questioning the very concept of neutral genetic diversity. In this study, we quantified genome-wide responses of single nucleotide polymorphism loci linked to climatic factors over a strong latitudinal gradient in natural populations of the high Andean wetland plant, Carex gayana, and then assessed whether genetic variation of candidate climate-selected loci better predicted their genome-wide responses than genetic variation of non-candidate loci. Contrary to this expectation, genomic responses of climate-linked loci only related significantly to environmental variables and genetic diversity of non-candidate loci. The effects of genome-wide genetic diversity detected in this study may be a result of either the combined influence of small effect variants or neutral and demographic factors altering the adaptive evolutionary potential of C. gayana populations. Regardless of the processes involved, our results redeem genome-wide genetic diversity as a potentially useful indicator of population adaptive evolutionary potential.

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 534e-534 ◽  
Author(s):  
J. Staub ◽  
Felix Sequen ◽  
Tom Horejsi ◽  
Jin Feng Chen

Genetic variation in cucumber accessions from China was assessed by examining variation at 21 polymorphic isozyme loci. Principal component analysis of allelic variation allowed for the depiction of two distinct groupings of Chinese accessions collected in 1994 and 1996 (67 accessions). Six isozyme loci (Gpi, Gr, Mdh-2, Mpi-2, Pep-gl, and Pep-la) were important in elucidating these major groups. These groupings were different from a single grouping of Chinese 146 accessions acquired before 1994. Allelic variation in Chinese accessions allowed for comparisons with other accessions in the U.S. National Plant Germplasm System (U.S. NPGS) collection grouped by continent and sub-continent. When Chinese accessions taken collectively were compared with an array of 853 C. sativus U.S. NPGS accessions examined previously, relationships differed between accessions grouped by country or subcontinent. Data indicate that acquisition of additional Chinese and Indian cucumber accessions would be strategically important for increasing genetic diversity in the U.S. NPGS cucumber collection.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2504 ◽  
Author(s):  
Katarzyna Bilska ◽  
Monika Szczecińska

BackgroundResearch into the protection of rare and endangered plant species involves genetic analyses to determine their genetic variation and genetic structure. Various categories of genetic markers are used for this purpose. Microsatellites, also known as simple sequence repeats (SSR), are the most popular category of markers in population genetics research. In most cases, microsatellites account for a large part of the noncoding DNA and exert a neutral effect on the genome. Neutrality is a desirable feature in evaluations of genetic differences between populations, but it does not support analyses of a population’s ability to adapt to a given environment or its evolutionary potential. Despite the numerous advantages of microsatellites, non-neutral markers may supply important information in conservation genetics research. They are used to evaluate adaptation to specific environmental conditions and a population’s adaptive potential. The aim of this study was to compare the level of genetic variation inPulsatilla patenspopulations revealed by neutral SSR markers and putatively adaptive ISJ markers (intron-exon splice junction).MethodsThe experiment was conducted on 14 Polish populations ofP. patensand threeP. patenspopulations from the nearby region of Vitebsk in Belarus. A total of 345 individuals were examined. Analyses were performed with the use of eight SSR primers specific toP. patensand three ISJ primers.ResultsSSR markers revealed a higher level of genetic variation than ISJ markers (He= 0.609,He= 0.145, respectively). An analysis of molecular variance (AMOVA) revealed that, the overall genetic diversity between the analyzed populations defined by parametersFSTand ΦPTfor SSR (20%) and ΦPTfor ISJ (21%) markers was similar. Analysis conducted in theStructureprogram divided analyzed populations into two groups (SSR loci) and three groups (ISJ markers). Mantel test revealed correlations between the geographic distance and genetic diversity of Polish populations ofP. patensfor ISJ markers, but not for SSR markers.ConclusionsThe results of the present study suggest that ISJ markers can complement the analyses based on SSRs. However, neutral and adaptive markers should not be alternatively applied. Neutral microsatellite markers cannot depict the full range of genetic variation in a population because they do not enable to analyze functional variation. Although ISJ markers are less polymorphic, they can contribute to the reliability of analyses based on SSRs.


Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1185
Author(s):  
Helena Eklöf ◽  
Carolina Bernhardsson ◽  
Pär K. Ingvarsson

Conifer genomes are characterized by their large size and high abundance of repetitive material, making large-scale genotyping in conifers complicated and expensive. One of the consequences of this is that it has been difficult to generate data on genome-wide levels of genetic variation. To date, researchers have mainly employed various complexity reduction techniques to assess genetic variation across the genome in different conifer species. These methods tend to capture variation in a relatively small subset of a typical conifer genome and it is currently not clear how representative such results are. Here we take advantage of data generated in the first large-scale re-sequencing effort in Norway spruce and assess how well two commonly used complexity reduction methods, targeted capture probes and genotyping by sequencing perform in capturing genome-wide variation in Norway spruce. Our results suggest that both methods perform reasonably well for assessing genetic diversity and population structure in Norway spruce (Picea abies (L.) H. Karst.). Targeted capture probes were slightly more effective than GBS, likely due to them targeting known genomic regions whereas the GBS data contains a substantially greater fraction of repetitive regions, which sometimes can be problematic for assessing genetic diversity. In conclusion, both methods are useful for genotyping large numbers of samples and they greatly reduce the cost involved with genotyping a species with such a complex genome as Norway spruce.


2018 ◽  
Author(s):  
Marco A. Escalante ◽  
Charles Perrier ◽  
Francisco J. García-De León ◽  
Arturo Ruiz-Luna ◽  
Enrique Ortega-Abboud ◽  
...  

AbstractHow environmental and anthropogenic factors influence genetic variation and local adaptation is a central issue in evolutionary biology. The Mexican golden trout (Oncorhynchus chrysogaster), one of the southernmost native salmonid species in the world, is susceptible to climate change, habitat perturbations and the competition and hybridization with exotic rainbow trout (O. mykiss). The present study aimed for the first time to use genotyping-by-sequencing to explore the effect of genetic hybridization with O. mykiss and of riverscape and climatic variables on the genetic variation among O. chrysogaster populations. Genotyping-by-sequencing (GBS) was applied to generate 9767 single nucleotide polymorphisms (SNPs), genotyping 272 O. chrysogaster and O. mykiss. Population genomics analyses were combined with landscape ecology approaches into a riverine context (riverscape genetics). The clustering analyses detected seven different genetic groups (six for O. chrysogater and one for aquaculture O. mykiss) and a small amount of admixture between aquaculture and native trout with only two native genetic clusters showing exotic introgression. Latitude and precipitation of the driest month had a significant negative effect on genetic diversity and evidence of isolation by river resistance was detected, suggesting that the landscape heterogeneity was preventing trout dispersal, both for native and exotic individuals. Moreover, several outlier SNPs were identified as potentially implicated in local adaptation to local hydroclimatic variables. Overall, this study suggests that O. chrysogater may require conservation planning given i) exotic introgression from O. mykiss locally threatening O. chrysogater genetic integrity, and ii) putative local adaptation but low genetic diversity and hence probably reduced evolutionary potential especially in a climate change context.


2021 ◽  
Vol 11 ◽  
Author(s):  
Tatiana Souza do Amaral ◽  
Juliana Silveira dos Santos ◽  
Fernanda Fraga Rosa ◽  
Marcelo Bruno Pessôa ◽  
Lázaro José Chaves ◽  
...  

Plants are one of the most vulnerable groups to fragmentation and habitat loss, that may affect community richness, abundance, functional traits, and genetic diversity. Here, we address the effects of landscape features on adaptive quantitative traits and evolutionary potential, and on neutral genetic diversity in populations of the Neotropical savanna tree Caryocar brasiliense. We sampled adults and juveniles in 10 savanna remnants within five landscapes. To obtain neutral genetic variation, we genotyped all individuals from each site using nine microsatellite loci. For adaptive traits we measured seed size and mass and grown seeds in nursery in completely randomized experimental design. We obtained mean, additive genetic variance (Va) and coefficient of variation (CVa%), which measures evolvability, for 17 traits in seedlings. We found that landscapes with higher compositional heterogeneity (SHDI) had lower evolutionary potential (CVa%) in leaf length (LL) and lower aboveground dry mass (ADM) genetic differentiation (QST). We also found that landscapes with higher SHDI had higher genetic diversity (He) and allelic richness (AR) in adults, and lower genetic differentiation (FST). In juveniles, SHDI was also positively related to AR. These results are most likely due to longer dispersal distance of pollen in landscapes with lower density of flowering individuals. Agricultural landscapes with low quality mosaic may be more stressful for plant species, due to the lower habitat cover (%), higher cover of monocropping (%) and other land covers, and edge effects. However, in landscapes with higher SHDI with high quality mosaic, forest nearby savanna habitat and the other environments may facilitate the movement or provide additional habitat and resources for seed disperses and pollinators, increasing gene flow and genetic diversity. Finally, despite the very recent agriculture expansion in Central Brazil, we found no time lag in response to habitat loss, because both adults and juveniles were affected by landscape changes.


2018 ◽  
Vol 46 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Cintia P. Souto ◽  
Mariana Tadey

SummaryGenetic diversity is the raw material for species’ persistence over time, providing the potential to survive stochastic events, as well as climate and/or human-induced environmental changes. Biodiversity in dry rangelands is decreasing due to intensification of livestock production, but its effects on the genetic diversity of the consumed biota have seldom been assessed. We examined livestock effects on the genetic diversity of two dominant creosote species of the Patagonian Monte Desert, Larrea divaricata and Larrea cuneifolia. We deployed competing hierarchical regression models to assess the relationship between genetic variation within natural populations as a function of increasing stocking rates on ten arid rangelands. These species exhibit similar levels and patterns of genetic structure, with high levels of both inbreeding and divergence among locations. We found that increased stocking reduces genetic variation and increases genetic subdivision between populations. Our results indicate that grazing pressures are impoverishing the gene pool of these dominant native species of the Monte Desert, decreasing the evolutionary potential of the primary plant producers and increasing the desertification risk for a vulnerable habitat. We highlight the importance of considering livestock as a major driver of genetic losses in dry rangelands under overgrazing pressure, especially given current forecasts of climate change.


Author(s):  
SHARMILA S. ◽  
AKILANDESWARI D. ◽  
RAMYA E. K. ◽  
MOWNIKA S.

Objective: To investigate the ecological and genetic diversity, climatic factors, edaphic factors morphological and reproductive characters and RAPD analysis of medicinal plant species Pterolobium hexapetalum in two hills viz., Maruthamalai (arid) and Chennimalai (very arid), which is located in Coimbatore and Erode districts, Tamil Nadu. Methods: The present research was carried out by using a random amplified polymorphic DNA (RAPD) analysis was made to determine the genetic variation between the two populations of the medicinal shrub, Pterolobium hexapetalum in an environmental gradient. Among the five primers tested, the OPN7 (80 %) and OPN17 (71.4 %) produced higher polymorphism was used in RAPD analysis. Results: The results of RAPD analysis showed the presence of 51 individual bands were formed, out of which, 29 were polymorphic bands which showed the existence of genetic variation between populations. A dendrogram was constructed based on Jaccard’s coefficient to determine the degree of genetic relationship among the two populations and analysed. The primers OPN7 and OPN17 were clustered together at a genetic distance level 10. Considering the elevation and proximity, the temperature ranges from 18 °C to 37.6 °C in Maruthamalai hill and 20 °C to 39.4 °C in Chennimalai hill. Conclusion: From the morphoecological studies the results indicated that both arid and very arid climatic conditions showed slight differences in their vegetative and reproductive characters.


2021 ◽  
Author(s):  
Alessandro Alves-Pereira ◽  
Maria Imaculada Zucchi ◽  
Charles R. Clement ◽  
João Paulo Gomes Viana ◽  
José Baldin Pinheiro ◽  
...  

Knowledge about crops' genetic diversity is essential to promote effective use and conservation of their genetic resources, because genetic diversity enables farmers to adapt their crops to specific needs and is the raw material for breeding efforts. Currently, manioc (Manihot esculenta ssp. esculenta) is one of the most important food crops in the world and has the potential to help achieve food security in the context of on-going climate changes. In this study we assessed the patterns of genome-wide diversity of traditional Brazilian manioc varieties conserved in the gene bank of the Luiz de Queiroz College of Agriculture, University of São Paulo. We used single nucleotide polymorphisms to evaluate the organization of genetic diversity and to identify selective signatures contrasting varieties from different biomes with samples of manioc's wild relative M. esculenta ssp. flabellifolia. We identified signatures of selection putatively associated with resistance genes, plant development and response to abiotic stresses. This presumed adaptive variation might have been important for the initial domestication and for the crop's diversification in response to cultivation in different environments. The neutral variation revealed high levels of genetic diversity within groups of varieties from different biomes and low to moderate genetic divergence among biomes. These results reflect the complexity of manioc's biology and its evolutionary dynamics under traditional cultivation. Our results exemplify how the smallholder practices contribute to the conservation of manioc's genetic resources, maintaining variation of potential adaptive significance and high levels of neutral genetic diversity.


2019 ◽  
Vol 129 (2) ◽  
pp. 459-469
Author(s):  
Erin Prewer ◽  
Susan Kutz ◽  
Lisa Marie Leclerc ◽  
Christopher J Kyle

Abstract Low genetic diversity is associated with low fitness and evolutionary potential, yet the demographic and life-history traits of some species contribute to low genetic diversity, without empirical evidence of negative impacts on fitness. Modelling past and future trajectories of genetic diversity under different demographic scenarios can provide insight into how genetic variation might impact population fitness. The muskox is an Arctic species that has undergone multiple population bottlenecks and, although populations have rebounded repeatedly, two large populations have recently declined by > 50%. It is unclear how these demographic patterns influence muskox genetic diversity and fitness. We compared the genetic diversity of Canadian muskox populations undergoing opposing population trends. Genotyping 84 mainland and 244 Victoria Island individuals at ten microsatellite loci revealed low genetic variation (Victoria Island, mean allelic richness 1.66, expected heterozygosity 0.16; mainland, mean allelic richness 2.58, expected heterozygosity 0.41), with no evidence of further reductions in diversity subsequent to recent demographic declines. Bayesian modelling showed that a 1900s bottleneck contributed to the lack of diversity in contemporary populations, and forward-in-time simulations suggested little effect on genetic diversity over the next 100 years. Muskoxen might have reached a genetic diversity minimum, and additional research will be needed to determine their capacity to adapt to rapid changes in selective pressures in a rapidly changing Arctic.


Sign in / Sign up

Export Citation Format

Share Document