scholarly journals Impaired ability of Nef to counteract SERINC5 is associated with reduced plasma viremia in HIV-infected individuals

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mako Toyoda ◽  
Doreen Kamori ◽  
Toong Seng Tan ◽  
Kageaki Goebuchi ◽  
Jun Ohashi ◽  
...  

Abstract HIV-1 Nef plays an essential role in enhancing virion infectivity by antagonizing the host restriction molecule SERINC5. Because Nef is highly polymorphic due to the selective forces of host cellular immunity, we hypothesized that certain immune-escape polymorphisms may impair Nef’s ability to antagonize SERINC5 and thereby influence viral fitness in vivo. To test this hypothesis, we identified 58 Nef polymorphisms that were overrepresented in HIV-infected patients in Japan sharing the same HLA genotypes. The number of immune-associated Nef polymorphisms was inversely correlated with the plasma viral load. By breaking down the specific HLA allele-associated mutations, we found that a number of the HLA-B*51:01-associated Y120F and Q125H mutations were most significantly associated with a reduced plasma viral load. A series of biochemical experiments showed that the double mutations Y120F/Q125H, but not either single mutation, impaired Nef’s ability to antagonize SERINC5 and was associated with decreasing virion infectivity and viral replication in primary lymphocytes. In contrast, other Nef functions such as CD4, CCR5, CXCR4 and HLA class I downregulation and CD74 upregulation remained unchanged. Taken together, our results suggest that the differential ability of Nef to counteract SERINC5 by naturally occurring immune-associated mutations was associated with the plasma viral load in vivo.

2008 ◽  
Vol 205 (5) ◽  
pp. 1009-1017 ◽  
Author(s):  
Paul A. Goepfert ◽  
Wendy Lumm ◽  
Paul Farmer ◽  
Philippa Matthews ◽  
Andrew Prendergast ◽  
...  

In a study of 114 epidemiologically linked Zambian transmission pairs, we evaluated the impact of human leukocyte antigen class I (HLA-I)–associated amino acid polymorphisms, presumed to reflect cytotoxic T lymphocyte (CTL) escape in Gag and Nef of the virus transmitted from the chronically infected donor, on the plasma viral load (VL) in matched recipients 6 mo after infection. CTL escape mutations in Gag and Nef were seen in the donors, which were subsequently transmitted to recipients, largely unchanged soon after infection. We observed a significant correlation between the number of Gag escape mutations targeted by specific HLA-B allele–restricted CTLs and reduced VLs in the recipients. This negative correlation was most evident in newly infected individuals, whose HLA alleles were unable to effectively target Gag and select for CTL escape mutations in this gene. Nef mutations in the donor had no impact on VL in the recipient. Thus, broad Gag-specific CTL responses capable of driving virus escape in the donor may be of clinical benefit to both the donor and recipient. In addition to their direct implications for HIV-1 vaccine design, these data suggest that CTL-induced viral polymorphisms and their associated in vivo viral fitness costs could have a significant impact on HIV-1 pathogenesis.


2010 ◽  
Vol 84 (21) ◽  
pp. 11279-11288 ◽  
Author(s):  
Isobella Honeyborne ◽  
Francisco M. Codoñer ◽  
Alasdair Leslie ◽  
Gareth Tudor-Williams ◽  
Graz Luzzi ◽  
...  

ABSTRACT The potential importance of HLA-C-restricted CD8+ cytotoxic T lymphocytes (CTL) in HIV infection remains undetermined. We studied the dominant HLA-Cw*03-restricted CTL response to YVDRFFKTL296-304 (YL9), within the conserved major homology region (MHR) of the Gag protein, in 80 HLA-Cw*03-positive individuals with chronic HIV infection to better define the efficacy of the YL9 HLA-C-restricted response. The HLA-Cw*03 allele is strongly associated with HIV sequence changes from Thr-303 to Val, Ile, or Ala at position 8 within the YL9 epitope (P = 1.62 × 10−10). In vitro studies revealed that introduction of the changes T303I and T303A into the YL9 epitope both significantly reduced CTL recognition and substantially reduced the viral replicative capacity. However, subsequent selection of the Val-303 variant, via intracodon variation from Ile-303 (I303V) or Ala-303 (A303V), restored both viral fitness and CTL recognition, as supported by our in vivo data. These results illustrate that HLA-C-restricted CTL responses are capable of driving viral immune escape within Gag, but in contrast to what was previously described for HLA-B-restricted Gag escape mutants, the common Cw*03-Gag-303V variant selected resulted in no detectable benefit to the host.


2021 ◽  
Author(s):  
NM Otuonye ◽  
Luo Ma ◽  
Chris Chinweokwu ◽  
MN Aniedobe ◽  
RN Okoye ◽  
...  

ABSTRACTBackgroundThis study investigated HLA Class I in Long Term Non-progressors (LTNPs) and plasma viral load in Sexually Transmitted and Reproductive Tract Infections (STIs/RTIs) associated with Heterosexual HIV-1 transmission among serodiscordant couples in Nigeria.MethodsA total of 271 serodiscordant and concordant couples (HIV positive and negative) were enrolled, blood samples were collected from the subjects by venipuncture. HLA class I (with specific primers), plasma viral load, CD4+ analysis was done. Endocervical/urethral swabs and early morning urine samples were collected by standard microbiological methods. These were screened by microscopy, culture, antibiogram, and biochemical tests with a view to identify aetiologic agents of co-infections with HIV.ResultsThe Participants age ranged from ≥ 21- < 50years. The index whose plasma viral loads were 10,001-100,000 copies/ml had STIs/RTIs 32(60.9% p=0.059). Staphylococcus aureus and Escherichia coli (22.1%) were isolated from the index (HIV positive subject) while 14.5% of Staphylococcus aureus and 27.2% of E coli were isolated from their partners (HIV negative subject). Staphylococcus aureus and E coli are normal flora but because the patients are Immunocompromised as a result of positivity to HIV, Staphylococcus aureus and E. coli in this context becomes opportunistic thereby, causing genital tract infections. Staphylococcus from the index showed more sensitivity to Amoxicillin/clavulanate (95.4%/90.4%) compared to the partners (55.1%/73.5%) and more resistant to Ceftazidime (81.4%) compared to the partners (68.9%). LTNPs were 28(8.51%) among the index. HLA-B alleles: B*5701 (9.2%), B*5703 (4.6%) and B*5801(12.5%) were identified for viral control at late stage of HIV infection while A*1 (4.6%), and C*0701 (29.1%) were protective alleles observed. HLA-B*0702 (33.3%), B*4201/A*2301(4.6%) respectively were susceptible alleles associated with seroconversion among LTNPs.ConclusionThe microorganisms isolated from the index were associated with high viral loads and are independent makers to HIV-1 transmission among serodiscordant couples. Individuals associated with HLA class I alleles identified among LTNPs were those significantly associated with resistance and susceptible to HIV-1 infections.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 644-644
Author(s):  
Fabian Zohren ◽  
Maria R Imperato ◽  
Anurathapan Usanarat ◽  
David M Spencer ◽  
Helen E. Heslop ◽  
...  

Abstract Abstract 644 Adoptive transfer of ex-vivo expanded leukemia-specific T cells has been clinically evaluated for its ability to produce anti tumor effects without causing graft-versus-host disease (GVHD). Previous protocols, however, allowed the expansion only of HLA class I-restricted CD8 T cells, which were short-lived and permitted tumor immune escape since they recognized only a single epitope/antigen target. To minimize tumor immune escape and extend this therapeutic alternative to more patients irrespective of HLA type we have developed a novel strategy to produce single cultures of in vitro generated T cell lines containing tumor-cytotoxic T cells from both CD4+ and CD8+ populations with specificity for a multiplicity of epitopes on several tumor associated antigens (TAAs) frequently expressed by myeloid leukemias. Tumor-directed T cells were activated in vitro using dendritic cells (DCs) loaded with peptide libraries (pepmixes) spanning Proteinase 3 (Pr3), PRAME, and WT1 and expanded in the presence of a cocktail of Th1-polarizing, pro-survival and pro-proliferative cytokines (IL7, 12, 15 and 27). This approach consistently generated TAA-specific cytotoxic T lymphocytes (CTLs) with simultaneous reactivity against PRAME (mean 651+/−69 spot forming units (SFU)/1×106 CTLs), WT1 (mean 156+/−20 SFU/1×106 CTLs) and PR3 (mean 52.3+/−8.8 SFU/1×106 CTLs) in IFNg ELIspot assays (n=10). These lines were polyclonal, comprising antigen-specific CD4+ (mean 32.5+/−2.3%) and CD8+ (mean 38.3+/−4%) T cells. Functionally, these CTLs killed autologous PHA blasts pulsed with PRAME (mean specific lysis 67+/−5% SEM), WT-1 (mean 54+/− 5%) and PR3 pepmixes (mean 16+/−6%, n=6) (E:T of 40:1). In addition, TAA CTLs killed the partially (1-3 alleles) HLA class I or HLA class II matched whole antigen-expressing AML cell line THP1 in coculture assays (n=5). The in vivo anti-tumor activity of multiTAA-CTLs was tested using a SCID mouse tumor model. After subcutaneous engraftment of FFLuc transduced THP-1 cells, mice were treated with either 1×107 multiTAA-CTLs or control EBV-CTLs generated from the same partially HLA-matched donor (sharing HLA-A2, DRB1-01,DQB1-05) plus 1000U of IL2 (5 times per week). Tumor signals as measured by bioluminescence using an in vivo imaging system rapidly increased in untreated and EBV-CTL treated groups, whereas mice treated with TAA specific CTLs were able to control tumor growth (p<0.05) and significantly improve overall survival (log rank p=0.008). Next, we transduced multiTAA-CTL with a retroviral vector (SFG-hIL-7R/iCasp9) encoding IL7Ralpha and the inducible suicide gene iCaspase9. This genetic modification improved the in vivo persistence, anti-tumor potency of multiTAA-CTL by restoring their response to homeostatic IL7. Furthermore we improve safety with the potential to control unwanted proliferation of the transgenic cells and to treat potentially occurring autoimmune disease caused by targeting self antigens through the administration of a small molecule chemical inducer of dimerization (CID) (AP20187) which activates the suicide gene. Transduction of multiTAA-CTLs did not adversely affect the antigen specificity of the product as evaluated by IFNg ELIspot (528.5 SFU/1×106 CTL transduced vs. 573.9 SFU/1×106 CTL non transduced, PRAME, 86.7 vs.46.5 SFU/1×106 CTL, Pr3 and 129.2 vs 130.2 SFU/1×106 CTL and WT1 transduced vs. non transduced); and cytolytic activity against peptide-pulsed PHA blasts as well as whole antigen presenting tumor cell lines was maintained. In the presence of IL-7, transgenic multiTAA-CTLs expanded significantly (transduced cells increased from 55%+/1% to 89%+/−1%). Such expansion was not observed when these cells were cultured in the presence of IL-15 (decrease 55%+/1% to 34.6%+/−3.5%) (n=8). Proliferation assays confirmed that only IL7/casp9 engineered multiTAA-CTLs were able to proliferate in the presence of IL-7 (84638 CPM vs. 14923 CPM transduced vs non-transduced). Upon activation of iCaspase9 by of CID (AP20187), the proliferation of multiTAA-CTLs was halted and a decrease of transgenic cells from 89% to 3% with was detected within 24 hrs (n=7). Hence CTLs can be prepared that simultaneously target multiple TAA antigens expressed by myeloid malignancies, reducing the risk of tumor immune escape. In addition these tumor CTLs can be genetically modified to safely improve their in vivo survival, and persistence. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 81 (5) ◽  
pp. 2440-2448 ◽  
Author(s):  
Christof Geldmacher ◽  
Jeffrey R. Currier ◽  
Eva Herrmann ◽  
Antelmo Haule ◽  
Ellen Kuta ◽  
...  

ABSTRACT The importance of HLA class I-restricted CD8 T-cell responses in the control of human immunodeficiency virus (HIV) infection is generally accepted. While several studies have shown an association of certain HLA class I alleles with slower disease progression, it is not fully established whether this effect is mediated by HIV-specific CD8 T-cell responses restricted by these alleles. In order to study the influence of the HLA class I alleles on the HIV-specific CD8 T-cell response and on viral control, we have assessed HIV-specific epitope recognition, plasma viral load, and expression of HLA class I alleles in a cohort of HIV-seropositive bar workers. Possession of the HLA class I alleles B5801, B8101, and B0702 was associated with a low median viral load and simultaneously with a broader median recognition of Gag epitopes compared to all other HLA alleles (twofold increase) (P = 0.0035). We further found an inverse linear relationship between the number of Gag epitopes recognized and the plasma viral load (R = −0.36; P = 0.0016). Particularly, recognition of multiple epitopes within two regions of Gag (amino acids [aa] 1 to 75 and aa 248 to 500) was associated with the maintenance of a low steady-state viremia, even years after acute infection.


2016 ◽  
Vol 91 (4) ◽  
Author(s):  
Hayato Murakoshi ◽  
Madoka Koyanagi ◽  
Takayuki Chikata ◽  
Mohammad Arif Rahman ◽  
Nozomi Kuse ◽  
...  

ABSTRACT HLA-B*52:01-C*12:02, which is the most abundant haplotype in Japan, has a protective effect on disease progression in HIV-1-infected Japanese individuals, whereas HLA-B*57 and -B*27 protective alleles are very rare in Japan. A previous study on HLA-associated polymorphisms demonstrated that the number of HLA-B*52:01-associated mutations at four Pol positions was inversely correlated with plasma viral load (pVL) in HLA-B*52:01-negative individuals, suggesting that the transmission of HIV-1 with these mutations could modulate the pVL in the population. However, it remains unknown whether these mutations were selected by HLA-B*52:01-restricted CTLs and also reduced viral fitness. In this study, we identified two HLA-B*52:01-restricted and one HLA-C*12:02-restricted novel cytotoxic T-lymphocyte (CTL) epitopes in Pol. Analysis using CTLs specific for these three epitopes demonstrated that these CTLs failed to recognize mutant epitopes or more weakly recognized cells infected with mutant viruses than wild-type virus, supporting the idea that these mutations were selected by the HLA-B*52:01- or HLA-C*12:02-restricted T cells. We further showed that these mutations reduced viral fitness, although the effect of each mutation was weak. The present study demonstrated that the accumulation of these Pol mutations selected by HLA-B*52:01- or HLA-C*12:02-restricted CTLs impaired viral replication capacity and thus reduced the pVL. The fitness cost imposed by the mutations partially accounted for the effect of the HLA-B*52:01-C*12:02 haplotype on clinical outcome, together with the effect of HLA-B*52:01-restricted CTLs on viral replication, which had been previously demonstrated. IMPORTANCE Numerous population-based studies identified HLA-associated HIV-1 mutations to predict HIV-1 escape mutations from cytotoxic T lymphocytes (CTLs). However, the majority of these HLA-associated mutations have not been identified as CTL escape mutations. Our previous population-based study showed that five HLA-B*52:01-associated mutations at four Pol positions were inversely correlated with the plasma viral load in HLA-B*52:01-negative Japanese individuals. In the present study, we demonstrated that these mutations were indeed selected by CTLs specific for novel B*52:01- and C*12:02-restricted epitopes and that the accumulation of these mutations reduced the viral fitness in vitro. This study elucidated the mechanism by which the accumulation of these CTL escape mutations contributed to the protective effect of the HLA-B*52:01-HLA-C*12:02 haplotype on disease progression in HIV-1-infected Japanese individuals.


2021 ◽  
Author(s):  
Ivette A Nunez ◽  
Christopher Z Lien ◽  
Prabhuanand Selvaraj ◽  
Charles B Stauft ◽  
Shufeng Liu ◽  
...  

Epidemiological studies have revealed the emergence of multiple SARS-CoV-2 variants of concern (VOC), including the lineage B.1.1.7 that is rapidly replacing old variants. The B.1.1.7 variant has been linked to increased morbidity rates, transmissibility, and potentially mortality. To assess viral fitness in vivo and to address whether the B.1.1.7 variant is capable of immune escape, we conducted infection and re-infection studies in naive and convalescent Syrian hamsters (>10 months old). Hamsters infected by either a B.1.1.7 variant or a B.1 (G614) variant exhibited comparable viral loads and pathology. Convalescent hamsters that were previously infected by the original D614 variant were protected from disease following B.1.1.7 challenge with no observable clinical signs or lung pathology. Altogether, our study did not find that the B.1.1.7 variant significantly differs from the B.1 variant in pathogenicity in hamsters and that natural infection-induced immunity confers protection against a secondary challenge by the B1.1.7 variant.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Moein Dehbashi ◽  
Zohreh Hojati ◽  
Majid Motovali-bashi ◽  
Mazdak Ganjalikhani-Hakemi ◽  
Akihiro Shimosaka ◽  
...  

AbstractCancer recurrence presents a huge challenge in cancer patient management. Immune escape is a key mechanism of cancer progression and metastatic dissemination. CD25 is expressed in regulatory T (Treg) cells including tumor-infiltrating Treg cells (TI-Tregs). These cells specially activate and reinforce immune escape mechanism of cancers. The suppression of CD25/IL-2 interaction would be useful against Treg cells activation and ultimately immune escape of cancer. Here, software, web servers and databases were used, at which in silico designed small interfering RNAs (siRNAs), de novo designed peptides and virtual screened small molecules against CD25 were introduced for the prospect of eliminating cancer immune escape and obtaining successful treatment. We obtained siRNAs with low off-target effects. Further, small molecules based on the binding homology search in ligand and receptor similarity were introduced. Finally, the critical amino acids on CD25 were targeted by a de novo designed peptide with disulfide bond. Hence we introduced computational-based antagonists to lay a foundation for further in vitro and in vivo studies.


Sign in / Sign up

Export Citation Format

Share Document