scholarly journals Macrophage modulation of dental pulp stem cell activity during tertiary dentinogenesis

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vitor C. M. Neves ◽  
Val Yianni ◽  
Paul T. Sharpe

AbstractThe interaction between immune cells and stem cells is important during tissue repair. Macrophages have been described as being crucial for limb regeneration and in certain circumstances have been shown to affect stem cell differentiation in vivo. Dentine is susceptible to damage as a result of caries, pulp infection and inflammation all of which are major problems in tooth restoration. Characterising the interplay between immune cells and stem cells is crucial to understand how to improve natural repair mechanisms. In this study, we used an in vivo damage model, associated with a macrophage and neutrophil depletion model to investigate the role of immune cells in reparative dentine formation. In addition, we investigated the effect of elevating the Wnt/β-catenin pathway to understand how this might regulate macrophages and impact upon Wnt receiving pulp stem cells during repair. Our results show that macrophages are required for dental pulp stem cell activation and appropriate reparative dentine formation. In addition, pharmacological stimulation of the Wnt/β-catenin pathway via GSK-3β inhibitor small molecules polarises macrophages to an anti-inflammatory state faster than inert calcium silicate-based materials thereby accelerating stem cell activation and repair. Wnt/β-catenin signalling thus has a dual role in promoting reparative dentine formation by activating pulp stem cells and promoting an anti-inflammatory macrophage response.

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Eve H. Rogers ◽  
Sandra A. Fawcett ◽  
Vanja Pekovic-Vaughan ◽  
John A. Hunt

Optimising cell/tissue constructs so that they can be successfully accepted and integrated within a host body is essential in modern tissue engineering. To do this, adult stem cells are frequently utilised, but there are many aspects of their environment in vivo that are not completely understood. There is evidence to suggest that circadian rhythms and daily circadian temporal cues have substantial effects on stem cell activation, cell cycle, and differentiation. It was hypothesised that the circadian rhythm in human adult stem cells differs depending on the source of tissue and that different entraining signals exert differential effects depending on the anatomical source. Dexamethasone and rhythmic mechanical stretch were used to synchronise stem cells derived from the bone marrow, tooth dental pulp, and abdominal subcutaneous adipose tissue, and it was experimentally evidenced that these different stem cells differed in their circadian clock properties in response to different synchronisation mechanisms. The more primitive dental pulp-derived stem cells did not respond as well to the chemical synchronisation but showed temporal clock gene oscillations following rhythmic mechanical stretch, suggesting that incorporating temporal circadian information of different human adult stem cells will have profound implications in optimising tissue engineering approaches and stem cell therapies.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1705-1705
Author(s):  
Joyce S.G Yeoh ◽  
Ronald van Os ◽  
Ellen Weersing ◽  
Bert Dontje ◽  
Edo Vellenga ◽  
...  

Abstract Fibroblast Growth Factors (FGF) are a large family of signaling molecules widely involved in tissue development, maintenance and repair. Little is known about the role of FGF/FGF-receptor signaling in the regulation of adult hematopoietic stem cells (HSC). In this study, we assessed the potential of exogenously added FGF-1/2, or retrovirally overexpressed FGF-1 to preserve HSC function in vitro and in vivo. First, we demonstrate that in vitro culture of unfractionated mouse bone marrow cells, in serum-free medium, supplemented with FGF-1 or FGF-2 or FGF-1 + 2 resulted in the robust generation of long-term repopulating (LTR) HSCs. Cultures were maintained for 12 weeks and during that time in vivo competitive reconstitution assays were performed. Stem cell activity was detectable at 3, 5, and 8 weeks after initiation of culture, but lost after 12 weeks. However, whereas 3 and 5 week cultured cells provided radioprotection in non-competitive assays, animals transplanted with 8 or 12 week cultured cells succumbed due to bone marrow failure. So far, we have been unable to expand single, highly purified Lin−Sca-1+c-Kit+ using FGF-1 + 2. Consequently, we speculated that essential intermediate cell populations or signals are required for FGF-induced stem cell conservation. To test this we cultured highly purified CD45.1 Lin−Sca-1+c-Kit+ cells in a co-culture with CD45.2 unfractionated BM. Co-cultured cells were transplanted after 5 weeks in lethally irradiated recipients, and CD45.1 chimerism levels were assessed. High levels of CD45.1 chimerism confirmed that Lin−Sca-1+c-Kit+ cells require an accessory signal in addition to FGF to induced stem cell activity in vitro. We subsequently tested stem cell potential of cells cultured in FGF-1 + 2 for 5 weeks, with the addition of SCF + IL-11 + Flt3L for the last 2, 4 or 7 days. Cell numbers increased with increasing time of growth factor presence. However, only when growth factors were present for 2 days engraftment of cultured cells in a competitive repopulation assay was increased 3.5-fold. Finally, we show by immunohistochemistry that ~10% of freshly isolated Lin−Sca-1+c-Kit+ expresses high levels of FGF-1. Retroviral overexpression of FGF-1 in stem cells resulted in increased growth potential and sustained clonogenic activity in vitro. Upon transplantation of transduced stem cells, FGF-1 overexpression resulted in increased white blood cell counts 4 weeks post-transplant compared to control animals. Most notable was a marked granulocytosis in FGF-1 overexpressing recipients Our results reveal FGF as an important regulator of HSC signaling and homeostasis. Importantly, in the presence of FGF stem cells can be maintained in vitro for 2 months. These findings open novel avenues for in vitro manipulation of stem cells for future clinical therapies.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 711-711 ◽  
Author(s):  
Xiaoyan Jiang ◽  
Yun Zhao ◽  
Wing Yiu Chan ◽  
Emily Pang ◽  
Allen Eaves ◽  
...  

Abstract Imatinib mesylate (IM) is an inhibitor of the BCR-ABL oncoprotein associated with human chronic myeloid leukemia (CML). IM therapy has shown remarkable effects in initial clinical trials, but both clinical and laboratory studies increasingly suggest that, on its own, IM may have limited curative potential, due to a reduced IM sensitivity of the more primitive, slowly proliferating CD34+ CML cells thought to be responsible for sustaining the disease in vivo. To investigate the basis of this unresponsiveness, we compared the IM sensitivity and BCR-ABL expression of FACS-purified subsets of lin−CD34+ cells from 4 CML chronic phase patients. None of these had been treated with IM and their cells at all stages of differentiation were exclusively leukemic; i.e., >95% of the lin−CD34+CD38−, lin−CD34+CD38+ and lin+CD34− cells were BCR-ABL+ (by direct FISH) and all longterm culture-initiating cell (LTC-IC) -derived CFCs were Ph+. In the absence of IM, suspension cultures initiated with these lin−CD34+CD38− CML cells (0.5–5% of the lin−CD34+ cells) showed a net expansion of viable cells after 3 weeks; 100x with and 10x without added growth factors (GFs). Addition of 0.1–10 μM/ml IM reduced the yield of viable cells in a dose-dependent fashion, particularly when GFs were not added (100-fold decrease with 10 μM/ml IM). Parallel cultures of the corresponding lin−CD34+CD38+ CML cells showed these did not expanded as much (~8x +GFs, 2x -GFs) and were more sensitive to IM (1000-fold decrease after 3 weeks in 10 μM/ml IM -GFs). Quantitative real-time RT-PCR analysis revealed BCR-ABL transcripts to be present in the most primitive, freshly isolated lin−CD34+CD38− cells (n=12) at >300-fold higher levels than in the terminally differentiating lin+CD34− CML cells (n=21), at >10-fold higher levels than the normal BCR transcripts in the same lin−CD34+CD38− cells, and at 40-fold higher levels than in the less primitive lin−CD34+CD38+ cells (n=12), indicating a correlation between decreasing BCR-ABL transcripts and increasing IM sensitivity during CML stem cell differentiation in vivo. Interestingly, maintenance of the lin−CD34+CD38− CML cells for 3 weeks in vitro with 10 μM/ml IM (±GFs) consistently selected for a subset of leukemic cells (80–100% BCR-ABL+ by FISH) that showed complete resistance to 5 μM/ml IM in CFC assays, in marked contrast to the CFCs in the starting lin−CD34+CD38− cells that were inhibited 5–10-fold by 5 μM/ml IM. Moreover, although the Ph was the sole abnormality present in all direct metaphases, initial CFCs and LTC-IC-derived CFCs from all samples, a 17p+ abnormality was seen in 4/4 metaphases obtained from one colony generated from the cells present in one of the 3-week IM-containing cultures, suggesting the selective survival of differentiating progeny of rare, pre-existing, IM-resistant stem cells. Consistent with this possibility was the finding that BCR-ABL transcript levels in the cells present in the 3 week cultures were reduced 50-fold relative to the input lin−CD34+CD38− cells. Taken together, these findings suggest a previously undescribed epigenetic mechanism of IM unresponsiveness characteristic of chronic phase CML stem cells, in addition to the silent accumulation of genetically-determined IM-resistant members as the CML stem cell population expands during the development of the chronic phase of the disease.


1981 ◽  
Vol 154 (4) ◽  
pp. 1164-1177 ◽  
Author(s):  
M J Dyer ◽  
S V Hunt

The existence of stem cells committed to the T lymphoid lineage was deduced from studying how rat T and B stem cells differ in their expression of membrane W3/13 antigen and in their susceptibility in vivo to gamma irradiation. Stem cell activity of rat bone marrow and fetal liver was measured in long-term radiation chimeras using B and T cell alloantigenic surface markers to identify the progeny of donor cells. Monoclonal mouse anti-rat thymocyte antibody W3/13 labeled approximately 40% of fetal liver cells and 60-70% of young rat bone marrow cells (40% brightly, 25% dimly). Bright, dim, and negative cells were separated on a fluorescence-activated cell sorter. All B and T lymphoid stem cells in fetal liver were W3/13 bright, as were B lymphoid stem cells in bone marrow. W3/13 dim bone marrow had over half the T cell repopulating activity of unseparated marrow but gave virtually no B cell repopulation. In further experiments, the radiosensitivity of endogenous B and T lymphoid stem cells was determined by exposing host rats to between 4.5 and 10 Gy of gamma irradiation before repopulation with genetically marked marrow. The results depended on whether chimerism was assayed before day 50 or after day 100. At early times, a radioresistant T stem cell was indicated, whose activity waned later. Thus committed T stem cells of rats carry moderate amounts of W3/13 antigen and are more radioresistant but less permanently chimeragenic than the stem cells that regenerate B lymphocytes.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2351-2351
Author(s):  
Chiemi Nishida ◽  
Kaori Sato-Kusubata ◽  
Yoshihiko Tashiro ◽  
Ismael Gritli ◽  
Aki Sato ◽  
...  

Abstract Abstract 2351 Stem cells reside in a physical niche. The organization of cellular niches has been shown to play a key role in regulating normal stem cell differentiation, stem cell maintenance and regeneration. Various stem cell niches have been shown to be hypoxic, thereby maintaining the stem cell phenotype of e.g. hematopoietic stem cells (HSCs) or cancer stem cells. The bone marrow (BM) niche is a rich reservoir of tissue-specific pluripotent HSCs. Proteases such as matrix metalloproteinases (MMPs) have been implicated in cell movement, partly due to their proteolytic function, and they have been linked to cellular processes such as cell proliferation and differentiation. The proteolytic function of Membrane-type 1 MMP (MT1-MMP/MMP-14) is essential for angiogenesis, arthritis and tumour growth. Recently, it has been reported that MT1-MMP is highly expressed in HSCs and stromal/niche cells. However the clear function of MT1-MMP in hematopoiesis is not well understood. To reveal the functional consequences of MT1-MMP deficiency for post-natal hematopoiesis in vivo, we have taken advantage of MT1-MMP−/− mice to demonstrate that MT1-MMP deficiency leads to impaired steady state hematopoiesis of all hematopoietic cell lineages. In a search for factors whose deficiency could cause this hematopoietic phenotype, we found not only reduced protein release, but also reduced transcription of the following growth factors/chemokines in MT1-MMP−/− mice: erythropoietin (Epo), stromal cell-derived factor-1 (SDF-1a/CXCL12), interleukin-7 (IL-7) and Kit ligand (KitL, also known as stem cell factor). All of these factors, except for Epo, are typical stromal cell-derived factors. To ensure that impaired gene transcription in vivo was not due to a lower number of stromal cells in vivo, we demonstrated that MT1-MMP knockdown in stromal cells in vitro also reduced transcription of the stromal cell derived factors SDF-1a/CXCL12, IL-7 and KitL. In contrast, overexpression of MT1-MMP in stromal cells enhanced gene transcription of these factors. All genes, whose transcription was altered in vitro and in vivo due to MT1-MMP deficiency, had one thing in common: their gene transcription is regulated by the hypoxia inducible factor-1 (HIF-1) pathway. Further mechanistic studies revealed that MT1-MMP activates the HIF-1 pathway via factor inhibiting HIF-1 (FIH-1) within niche cells, thereby inducing the transcription of HIF-responsive genes, which induce terminal hematopoietic differentiation. Thus, MT1-MMP in niche cells regulates postnatal hematopoiesis by modulating hematopoietic HIF-dependent niche factors that are critical for terminal differentiation and migration. Disclosures: No relevant conflicts of interest to declare.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Gabriel N Aughey ◽  
Alicia Estacio Gomez ◽  
Jamie Thomson ◽  
Hang Yin ◽  
Tony D Southall

During development eukaryotic gene expression is coordinated by dynamic changes in chromatin structure. Measurements of accessible chromatin are used extensively to identify genomic regulatory elements. Whilst chromatin landscapes of pluripotent stem cells are well characterised, chromatin accessibility changes in the development of somatic lineages are not well defined. Here we show that cell-specific chromatin accessibility data can be produced via ectopic expression of E. coli Dam methylase in vivo, without the requirement for cell-sorting (CATaDa). We have profiled chromatin accessibility in individual cell-types of Drosophila neural and midgut lineages. Functional cell-type-specific enhancers were identified, as well as novel motifs enriched at different stages of development. Finally, we show global changes in the accessibility of chromatin between stem-cells and their differentiated progeny. Our results demonstrate the dynamic nature of chromatin accessibility in somatic tissues during stem cell differentiation and provide a novel approach to understanding gene regulatory mechanisms underlying development.


2021 ◽  
Vol 11 (5) ◽  
pp. 430
Author(s):  
Hytham N. Fageeh ◽  
Shilpa Bhandi ◽  
Mohammed Mashyakhy ◽  
Ahmed Al Kahtani ◽  
Zahi Badran ◽  
...  

Autogenous gingival grafts used for root coverage or gingival augmentation procedures often result in donor site morbidity. Living cellular constructs as an exogenous alternative have been proven to be associated with lower morbidity. With the available background information, the present study aims to assess if quercetin-induced living cell constructs, derived from dental pulp stem cells, have the potential to be applied as a tool for soft tissue augmentation. The characterized dental pulp stem cells (positive for CD73, CD90, and negative for CD34, HLA-DR) were expanded in Dulbecco’s Modified Eagle’s medium (DMEM) supplemented with 10 mM quercetin. The handling properties of the quercetin-induced dental pulp stem cell constructs were assessed by visual, and tactile sensation. A microscopic characterization using hematoxylin and eosin staining, and qRT-PCR-based analysis for stemness-associated genes (OCT4, NANOG, SOX2, and cMyc) was also performed. Dental pulp stem cells without quercetin administration were used as the control. Dental pulp stem cell constructs induced by quercetin easily detached from the surface of the plate, whereas there was no formation in the control cells. It was also simple to transfer the induced cellular construct on the flattened surface. Microscopic characterization of the constructs showed cells embedded in a tissue matrix. Quercetin also increased the expression of stemness-related genes. The use of quercetin-induced DPSC living constructs for soft tissue augmentation could provide an alternative to autogenous soft tissue grafts to lower patient morbidity and improve esthetic outcomes.


2019 ◽  
Vol 3 (3) ◽  
pp. 175-181 ◽  
Author(s):  
Trivandrum T. Sivakumar ◽  
Alex M. Muruppel ◽  
Anna P. Joseph ◽  
A. Reshmi ◽  
Rajesh Ramachandran ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Fanglin Wang ◽  
Xiang Li ◽  
Zhiyuan Li ◽  
Shoushuai Wang ◽  
Jun Fan

The mesenchymal stem cells (MSCs) are known as highly plastic stem cells and can differentiate into specialized tissues such as adipose tissue, osseous tissue, muscle tissue, and nervous tissue. The differentiation of mesenchymal stem cells is very important in regenerative medicine. Their differentiation process is regulated by signaling pathways of epigenetic, transcriptional, and posttranscriptional levels. Circular RNA (circRNA), a class of noncoding RNAs generated from protein-coding genes, plays a pivotal regulatory role in many biological processes. Accumulated studies have demonstrated that several circRNAs participate in the cell differentiation process of mesenchymal stem cells in vitro and in vivo. In the current review, characteristics and functions of circRNAs in stem cell differentiation will be discussed. The mechanism and key role of circRNAs in regulating mesenchymal stem cell differentiation, especially adipogenesis, will be reviewed and discussed. Understanding the roles of these circRNAs will present us with a more comprehensive signal path network of modulating stem cell differentiation and help us discover potential biomarkers and therapeutic targets in clinic.


Sign in / Sign up

Export Citation Format

Share Document