scholarly journals Shape effect on MHD flow of time fractional Ferro-Brinkman type nanofluid with ramped heating

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Saqib ◽  
Ilyas Khan ◽  
Sharidan Shafie ◽  
Ahmad Qushairi Mohamad

AbstractThe colloidal suspension of nanometer-sized particles of Fe3O4 in traditional base fluids is referred to as Ferro-nanofluids. These fluids have many technological applications such as cell separation, drug delivery, magnetic resonance imaging, heat dissipation, damping, and dynamic sealing. Due to the massive applications of Ferro-nanofluids, the main objective of this study is to consider the MHD flow of water-based Ferro-nanofluid in the presence of thermal radiation, heat generation, and nanoparticle shape effect. The Caputo-Fabrizio time-fractional Brinkman type fluid model is utilized to demonstrate the proposed flow phenomenon with oscillating and ramped heating boundary conditions. The Laplace transform method is used to solve the model for both ramped and isothermal heating for exact solutions. The ramped and isothermal solutions are simultaneously plotted in the various figures to study the influence of pertinent flow parameters. The results revealed that the fractional parameter has a great impact on both temperature and velocity fields. In the case of ramped heating, both temperature and velocity fields decreasing with increasing fractional parameter. However, in the isothermal case, this trend reverses near the plate and gradually, ramped, and isothermal heating became alike away from the plate for the fractional parameter. Finally, the solutions for temperature and velocity fields are reduced to classical form and validated with already published results.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
M. Ramzan ◽  
Zaib Un Nisa ◽  
M. Ahmad ◽  
M. Nazar

Unsteady magnetohydrodynamics (MHD) flow of fractionalized Brinkman-type fluid over a vertical plate is discussed. In the model of problem, additional effects such as heat generation/absorption and chemical reaction are also considered. The model is solved by using the Caputo fractional derivative. The governing dimensionless equations for velocity, concentration, and temperature profiles are solved using the Laplace transform method and compared graphically. The effects of different parameters like fractional parameter, heat generation/absorption Q , chemical reaction R, and magnetic parameter M are discussed through numerous graphs. Furthermore, comparison among ordinary and fractionalized velocity fields are also drawn. From the figures, it is observed that chemical reaction and magnetic field have decreasing effect on velocity profile, whereas thermal radiation and mass Grashof numbers have increasing effect on the velocity of the fluid.


Fractals ◽  
2021 ◽  
Author(s):  
NADEEM AHMAD SHEIKH ◽  
DENNIS LING CHUAN CHING ◽  
HAMZAH BIN SAKIDIN ◽  
ILYAS KHAN

The enhancement of the working ability of the industrial fluid is the need of the present era; nanofluid is an emerging field in science and technology. In this study, the Brinkman-type fluid model is used and is generalized using the Fourier’s and Fick’s laws. The graphene oxide nanoparticles are dispersed in the base fluid water. The fractional partial differential equations are then solved via the Laplace and Fourier transform method. The obtained solutions for velocity, heat transfer, and mass transfer are plotted in graphs. The results show that velocity profile decreases for Brinkman-type fluid parameter and volume fraction of the nanoparticles. The plot for the fractional parameter shows that different plots can be drawn for a fixed time and other physical parameters, which is the memory effect.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Rashid Ayub ◽  
Shahzad Ahmad ◽  
Muhammad Imran Asjad ◽  
Mushtaq Ahmad

In this article, an unsteady free convection flow of MHD viscous fluid over a vertical rotating plate with Newtonian heating and heat generation is analyzed. The dimensionless governing equations for temperature and velocity fields are solved using the Laplace transform technique. Analytical solutions are obtained for the temperature and components of velocity fields. The obtained solutions satisfy the initial and boundary conditions. Some physical aspects of flow parameters on the fluid motion are presented graphically.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Asma Khalid ◽  
Ilyas Khan ◽  
Sharidan Shafie

The unsteady free flow of a Casson fluid past an oscillating vertical plate with constant wall temperature has been studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behaviour. The governing partial differential equations corresponding to the momentum and energy equations are transformed into linear ordinary differential equations by using nondimensional variables. Laplace transform method is used to find the exact solutions of these equations. Expressions for shear stress in terms of skin friction and the rate of heat transfer in terms of Nusselt number are also obtained. Numerical results of velocity and temperature profiles with various values of embedded flow parameters are shown graphically and their effects are discussed in detail.


Author(s):  
M. Sigurdson ◽  
C. D. Meinhart

Thermally driven microfluidics, that is, flow that is driven by a temperature gradient, has applications from lab-on-a-chip to electronics cooling. Development of such devices requires tools to predict and probe temperature and velocity fields. We have developed analytical, numerical, and experimental analysis tools for design and characterization of thermally driven microfluidic systems. We demonstrate these tools through the analysis of two different systems: an electrothermal microstirring biochip, and a high aspect heat pipe for cooling. First, a numerical model is developed for temperature and velocity fields, in a hybrid electrothermal-buoyancy microstirring device. An analytical tool, the electrothermal Rayleigh number, is used to further explore the relative importance of electrothermal and buoyancy driven flow. Finally, two experimental thermometry techniques are described: fluorescence thermometry and infrared thermometry. These analytical, numerical, and experimental tools are useful in the design of thermally driven microfluidic systems, as demonstrated here through the development and analysis of microstirring and heat pipe systems.


2013 ◽  
Vol 68 (10-11) ◽  
pp. 635-645 ◽  
Author(s):  
Ilyas Khan ◽  
Farhad Ali ◽  
Sharidan Shafie ◽  

In this paper, exact solutions of velocity and stresses are obtained for the magnetohydrodynamic (MHD) flow of a Maxwell fluid in a porous half space by the Laplace transform method. The flows are caused by the cosine and sine oscillations of a plate. The derived steady and transient solutions satisfy the involved differential equations and the given conditions. Graphs for steady-state and transient velocities are plotted and discussed. It is found that for a large value of the time t, the transient solutions disappear, and the motion is described by the corresponding steady-state solutions.


Author(s):  
Muhammad Saqib ◽  
Ilyas Khan ◽  
Sharidan Shafie

This article presents the generalization of the unsteady MHD free convection flow of non-Newtonian sodium alginate-ferrimagnetic nanofluid in two infinite vertical parallel plates. The different shape (blade, brick, cylinder, and platelet) ferrimagnetic nanoparticles are dissolved in the non-Newtonian sodium alginate (SA) as base fluid to form non-Newtonian nanofluids. The Jeffrey fluid model together with energy equation is considered to demonstrate the flow. The Atangana–Baleanu fractional operator is utilized for the generalization of mathematical model. The Laplace transform technique and Zakian's numerical algorithm are used to developed general solutions with a fractional order for the proposed model. The obtained results are computed numerically and presented graphically to understand the physics of pertinent flow parameters. It is noticed that the velocity and temperature profiles are significantly increased with the increasing values of the fractional parameter due to the variation in thermal and momentum boundary layers. In the case of the effect of different shapes of nanoparticles, density is a dominant factor as compared to thermal conductivity, which significantly affects the flow of non-Newtonian nanofluid.


Author(s):  
Yeong-Ley Tsay ◽  
Jen-Chieh Cheng ◽  
Yong-Lin Zhuang

A numerical analysis is performed to study the characteristics of heat transfer from a block heat source module at different angles in two-dimensional cabinets. Great efforts are carried out to conduct the effects of thermal interaction between the air steams inside and outside the cabinet on the conjugate conduction–natural convection phenomena. Moreover, the enhancement of cooling performance of the heat source module through the construction of air vents on cabinet wall is rigorously examined. The computation domain covers the cabinet and the surrounding area, and the temperature and velocity fields of the cabinet and surrounding area are solved simultaneously. Results show that the thermal interaction between the airs inside and outside the cabinet, the module angle and vent position can significantly affect the transfer characteristics. Comparing the results for cases with and without the consideration of thermal interaction between the air streams, the difference in hot spot temperature of module can be up to 26% for Pr = 0.7, Kbf = Kpf = Kwf = 100, 105 ≦ Ra ≦ 107 and φ = 0°, 90°, 270°. The maximum reduction in hot spot temperature is about 41% when two air vents are constructed on cabinet wall. The variation of module angle results in the maximum difference of the hot spot temperature is 15% for closed cabinet, and 10% for ventilated cabinet.


Author(s):  
D. Newport ◽  
T. Dalton ◽  
M. Davies

In this paper, measurements are presented of the temperature and velocity fields about two PCBs, with an array of five equally spaced two dimensional ribs. The ribs are two dimensional approximations of the Super Ball Grid Array (SuperBGA) package from Amkor electronics. The temperature and Nusselt number distributions are measured using Digital Moire´ Subtraction Interferometry and PIV is used to measure the velocity field. The effect of substrate conductivity is examined, and the level of thermal interaction is quantified. It is found that substrate conductivity significantly alters the induced boundary layer flow and also the recirculating vortex structure external to it. It is also found that there is a trade-off between a downstream component being heated by the thermal energy of the plume from a lower component, and cooled by the kinetic energy of that plume. The spacing to length ratio, above which the cooling effect is greater, is three for components mounted on a board with a high effective conductivity (15 W/m K). The ratio is greater than three for PCBs with lower effective conductivities. Previous work in the literature indicates a ratio greater than four for components mounted flush with an adiabatic substrate.


2019 ◽  
Vol 111 ◽  
pp. 01040
Author(s):  
Ahmed A. Masoud ◽  
Essam E. Khalil ◽  
Abdelmaged H. Ibrahim ◽  
Esmail M. ElBialy

This work investigates the feasibility and thermal comfort of using natural ventilation in order to achieve thermal comfort in a handball arena with realistic dimensions and a full occupation of 4300 persons in the Gulf area. The work numerically simulates the temperature and velocity fields inside the full arena using computational fluid dynamics techniques at different internal loads, prevailing wind speeds, prevailing wind temperatures and prevailing wind angles. The work generates certain air opening configuration to be used for natural ventilation and the results show that natural ventilation is feasible if the following conditions are met simultaneously: the occupation density is 25% or less, sitting in the prevailing wind side, the lighting load does not exceed 50% of its full capacity, the prevailing wind temperature does not exceed 30 °C and the prevailing wind velocity is in range 3-4 m/s, where the upper limit arises from the requirement to avoid high velocities in the playing area. These conditions can be met during the training time and during parts of the day and over parts of the year hours making this method conditionally feasible.


Sign in / Sign up

Export Citation Format

Share Document