scholarly journals Population epidemiology and concordance for plasma amino acids and precursors in 11–12-year-old children and their parents

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stephanie Andraos ◽  
Katherine Lange ◽  
Susan A. Clifford ◽  
Beatrix Jones ◽  
Eric B. Thorstensen ◽  
...  

AbstractAmino acid (AA) concentrations are influenced by both exogenous (e.g. diet, lifestyle) and endogenous factors (e.g. genetic, transcriptomic, epigenetic, and metabolomic). Fasting plasma AA profiles in adulthood are predictive of diabetes risk over periods of up to 12 years. Data on AA profiles in cross-generational cohorts, including individuals from shared gene-environment settings are scarce, but would allow the identification of the contribution of heritable and environmental factors characterising the levels of circulating AAs. This study aimed to investigate parent–child (familial dyad) concordance, absolute differences between generations- (children versus adults), age- (in adults: 28–71 years), and sex-dependent differences in plasma AA concentrations. Plasma AA concentrations were measured by UHPLC/MS–MS in 1166 children [mean (SD) age 11 (0.5) years, 51% female] and 1324 of their parents [44 (5.1) years, 87% female]. AA concentrations were variably concordant between parents and their children (5–41% of variability explained). Most AA concentrations were higher in adults than children, except for the non-essential AAs arginine, aspartic acid, glutamine, hydroxy-proline, proline, and serine. Male adults and children typically had higher AA concentrations than females. The exceptions were alanine, glutamine, glycine, hydroxy-proline, serine, and threonine in girls; and glycine and serine in women. Age, sex, and shared familial factors are important determinants of plasma AA concentrations.

PEDIATRICS ◽  
1970 ◽  
Vol 45 (5) ◽  
pp. 782-791
Author(s):  
Ralph D. Feigin ◽  
Morey W. Haymond

Blood amino acids were obtained every 4 hours for 24 hours from 46 full-term infants who were between 1 hour and 120 hours of age when first sampled. Blood was also obtained at 0400 and 1200 hours on the same day from 10 additional infants, aged 48 to 72 hours at the time of study, for more detailed analysis of individual blood amino acids. Periodicity of total blood amino acids was demonstrated as early as the first day of life in some infants. This blood amino acid rhythmicity was similar but not identical to that previously observed in adults and older children. Concentrations of blood amino acids were minimal at 0400 hours and peaked between 1200 and 2000 hours. Periodicity of individual blood amino acids was similar to that for total blood amino acids but much less consistent. The presence of periodicity for plasma tyrosine was demonstrable even in two patients with neonatal tyrosinemia. Since plasma amino acids vary normally as a function of time, "normal values" must be standardized for time of day.


1997 ◽  
Vol 41 (2) ◽  
pp. 314-318 ◽  
Author(s):  
E Hannecart-Pokorni ◽  
F Depuydt ◽  
L de wit ◽  
E van Bossuyt ◽  
J Content ◽  
...  

The amikacin resistance gene aac(6')-Im [corrected] from Citrobacter freundii Cf155 encoding an aminoglycoside 6'-N-acetyltransferase was characterized. The gene was identified as a coding sequence of 521 bp located down-stream from the 5' conserved segment of an integron. The sequence of this aac(6')-Im [corrected] gene corresponded to a protein of 173 amino acids which possessed 64.2% identity in a 165-amino-acid overlap with the aac(6')-Ia gene product (F.C. Tenover, D. Filpula, K.L. Phillips, and J. J. Plorde, J. Bacteriol. 170:471-473, 1988). By using PCR, the aac(6')-Im [corrected] gene could be detected in 8 of 86 gram-negative clinical isolates from two Belgian hospitals, including isolates of Citrobacter, Klebsiella spp., and Escherichia coli. PCR mapping of the aac(6')-Im [corrected] gene environment in these isolates indicated that the gene was located within a sulI-type integron; the insert region is 1,700 bases long and includes two genes cassettes, the second being ant (3")-Ib.


2004 ◽  
Vol 134 (9) ◽  
pp. 2182-2190 ◽  
Author(s):  
Xinfu Guan ◽  
Brian J. Bequette ◽  
Pao K. Ku ◽  
Robert J. Tempelman ◽  
Nathalie L. Trottier

1973 ◽  
Vol 103 (4) ◽  
pp. 608-617 ◽  
Author(s):  
Y. Peng ◽  
J. Gubin ◽  
A. E. Harper ◽  
M. G. Vavich ◽  
A. R. Kemmerer

1959 ◽  
Vol 197 (4) ◽  
pp. 873-879 ◽  
Author(s):  
Roland A. Coulson ◽  
Thomas Hernandez

The rate of renal deamination of 18 amino acids was determined by injecting them into alligators and measuring the ammonia excreted. Not only did glycine, alanine, glutamine and leucine account for nearly half of the plasma amino acids, they were also deaminated more rapidly than any of the others. In view of this it was concluded that these four amino acids are the natural precursors of urinary NH3 in the alligator. Increased NH3 and CO2 excretion following glycine injections resulted in increased renal reabsorption of Na and Cl when NaCl was injected and increased Na reabsorption when NaHCO3 or Na phosphate solutions were injected. The fact that excess NH4HCO3 excretion enhances salt reabsorption independent of plasma pH makes it probable that the excretion of N is the chief function of the ammonia mechanism and that salt conservation is incidental. Insulin decreased the plasma amino acid level and drastically reduced the NH3 excretion. With the decrease in ammonia, NaCl and NaHCO3 were excreted in increased amounts.


1983 ◽  
Vol 3 (1_suppl) ◽  
pp. 10-12 ◽  
Author(s):  
Oimitrios G. Oreopoulos ◽  
Errol Marliss G. Harvey ◽  
Anderson Arie Oren ◽  
Nicholas Oombros Paul ◽  
Williams Ramesh Khanna ◽  
...  

As a result of a combination of a decreased appetite with increased nutrient losses in the dialysate, a number of CAPO patients may develop malnutrition. A decrease in appetite is also observed in normal animals undergoing CAPO which suggests that some factors related to CAPO influence appetite so that these animals eat less. In addition to protein losses, CAPO patients are losing approximately two grams of amino acids a day, and they have plasma amino acid abnormalities similar to those produced by malnutrition and uremia. An amino acid-containing dialysis solution (2%) is an effective solution with respect to ultrafiltration and solute removal. Amino acids can be absorbed by the peritoneal route and produce an increase in plasma amino acids to levels similar to those observed after a protein meal. These observations indicate that administration of amino acids via the peritoneal route may prevent or correct malnutrition developed in patients on CAPO.


2001 ◽  
Vol 81 (2) ◽  
pp. 229-235 ◽  
Author(s):  
J. C. Plaizier ◽  
J. -P. Walton ◽  
B. W. McBride

The objectives of this study were to examine the effect of supplying post-ruminal L-glutamine in mid-lactation Holstein dairy cows on plasma amino acid profile, dry matter intake, milk yield and milk composition. The experiment was designed as a 4 × 4 Latin square with four 2-wk periods. Cows were continuously infused post-ruminally with graded levels of L-glutamine (L-Gln) for 5 consecutive days during the second week of each period. During the last 24 h of the infusion, blood plasma was collected every 6 h for the determination of plasma amino acid concentrations. Plasma Gln concentration increased (P < 0.05) with increasing L-Gln daily infusions. Infusion of 0, 100, 200, and 300 g d–1 resulted in blood plasma Gln concentrations of 289.5, 299.2, 356.4 and 386.2 mmol L–1, respectively. The level of Gln infusion also resulted in a decrease in the blood plasma concentration of phenylalanine, but the concentrations of all other amino acids were not affected. The administration of Gln did not affect dry matter intake, milk yield and milk composition. Key words: Post-ruminal, L-glutamine, plasma amino acids, milk constituents


1985 ◽  
Vol 4 (1) ◽  
pp. 21-27 ◽  
Author(s):  
K.M. Gil ◽  
P. Furst ◽  
J. Wood ◽  
J. Askanazi ◽  
D.H. Elwyn ◽  
...  

2008 ◽  
Vol 101 (2) ◽  
pp. 295-303 ◽  
Author(s):  
Margriet A. B. Veldhorst ◽  
Arie G. Nieuwenhuizen ◽  
Ananda Hochstenbach-Waelen ◽  
Klaas R. Westerterp ◽  
Marielle P. K. J. Engelen ◽  
...  

The present study compared the effects of a high- and normal-casein-protein breakfast on satiety, ‘satiety’ hormones, plasma amino acid responses and subsequent energy intake. Twenty-five healthy subjects (BMI 23·9 (sem 0·3) kg/m2; age 22 (sem 1) years) received a subject-specific standardised breakfast (20 % of daily energy requirements): a custard with casein as the single protein source with either 10, 55 and 35 (normal-casein breakfast) or 25, 55 and 20 (high-casein breakfast) % of energy (En%) from protein, carbohydrate and fat respectively in a randomised, single-blind design. Appetite profile (visual analogue scale; VAS), plasma glucose, insulin, glucagon-like peptide 1, ghrelin and amino acid concentrations were determined for 4 h; here the sensitive moment in time for lunch was determined. Subjects came for a second set of experiments and received the same custards for breakfast, and an ad libitum lunch was offered at 180 min after breakfast; energy intake was assessed. There were increased scores of fullness and satiety after the 25 En% casein-custard compared with the 10 En% casein-custard, particularly at 180 min (26 (sem 4) v. 11 (sem 5) mm VAS; P < 0·01) and 240 min (13 (sem 5) v. − 1 (sem 5) mm VAS; P < 0·01). This coincided with prolonged elevated plasma amino acid concentrations; total amino acids and branched-chain amino acids were higher after the 25 En% casein-custard compared with the 10 En% casein-custard at 180 and 240 min (P < 0·001). There was no difference in energy intake (3080 (sem 229) v. 3133 (sem 226) kJ for 25 En% and 10 En% respectively; NS) from the ad libitum lunch. In conclusion, a breakfast with 25 % of energy from casein is rated as being more satiating than a breakfast with 10 % of energy from casein at 3 and 4 h after breakfast, coinciding with prolonged elevated concentrations of plasma amino acids, but does not reduce subsequent energy intake.


Sign in / Sign up

Export Citation Format

Share Document