scholarly journals Analyzing the delays of target lane vehicles caused by vehicle lane-changing operation

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Quantao Yang ◽  
Feng Lu ◽  
Jun Ma ◽  
Xuejun Niu ◽  
Jingsheng Wang

AbstractVehicle lane-changing on urban roads is the most common traffic behavior, in which the driver changes the direction or increases the speed of the vehicle by changing its trajectory. However, in high-density traffic flow, when a vehicle changes lanes, a series of vehicles following the target vehicle in the target lane will be delayed. In this study, DJI Phantom 4 drones were used to vertically record the traffic on a road section. Tracker software was then used to extract vehicle information from the video taken by the drones, including the vehicle operating speeds, etc. SPSS 22 and Origin analysis software were then employed to analyze the correlations between different vehicle operating parameters. It was found that the operating speed of the first vehicle following the target vehicle in the target lane is related to the speeds and positions of both the target vehicle and the vehicle preceding it. Under the condition of high-density traffic flow, when the target vehicle is inserted into the target lane, the speed of the vehicles following the target vehicle in the target lane will change. To model this process, the corresponding Sine and DoseResp models were constructed. By calculating the delays of vehicles following the target vehicle in the target lane, it was concluded that the overall delay of the fleet is 3.9–9.5 s.

2014 ◽  
Vol 926-930 ◽  
pp. 3661-3664
Author(s):  
Li Na Liu ◽  
Jie Wang ◽  
Chang Sheng Zhu ◽  
Qing Yang

based on the main road into a two lane entrance ramp system the open boundary conditions, using the asymmetric lane changing rules, considering driver behavior characteristics, from standpoint of safety driving ,simulate the entrance ramp system. We get a basic road map different entrance probability of flow, velocity, and analyze the driving safety.compared with reference, and the reference results show that after considering driver behavior, in the ramp at the interface, reduce the interaction with the main ramp,not only the system traffic flow in each section is improved, and but also improve the driving safety.Considering the entrance ramp system driver behavior can be simulated more in line with the running state of the vehicle in real life.


2011 ◽  
Vol 22 (03) ◽  
pp. 271-281 ◽  
Author(s):  
SHINJI KUKIDA ◽  
JUN TANIMOTO ◽  
AYA HAGISHIMA

Many cellular automaton models (CA models) have been applied to analyze traffic flow. When analyzing multilane traffic flow, it is important how we define lane-changing rules. However, conventional models have used simple lane-changing rules that are dependent only on the distance from neighboring vehicles. We propose a new lane-changing rule considering velocity differences with neighboring vehicles; in addition, we embed the rules into a variant of the Nagel–Schreckenberg (NaSch) model, called the S-NFS model, by considering an open boundary condition. Using numerical simulations, we clarify the basic characteristics resulting from different assumptions with respect to lane changing.


Author(s):  
Jianzhong Chen ◽  
Yang Zhou ◽  
Jing Li ◽  
Huan Liang ◽  
Zekai Lv ◽  
...  

In this paper, an improved multianticipative cooperative adaptive cruise control (CACC) model is proposed based on fully utilizing multivehicle information obtained by vehicle-to-vehicle communication. More flexible, effective and practical spacing strategy is embedded into the model. We design a new lane-changing rule for CACC vehicles on the freeway. The rule considers that CACC vehicles are more inclined to form a platoon for coordinated control. Furthermore, we investigate the effect of CACC vehicles on two-lane traffic flow. The results demonstrate that introducing CACC vehicles into mixed traffic and forming CACC platoon to cooperative control can improve traffic efficiency and enhance road capacity to a certain extent.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 283
Author(s):  
Jalal T. S. Al-Obaedi ◽  
Muhanad Al-temimy ◽  
Amal Ali

Traffic characteristics at highway sections are usually varying based on many factors including type of highways, geometric design and drivers’ behavior at a given area (country).  This paper focuses on finding the characteristics for traffic on selected normal freeway section at Baghdad city.  Video recordings and speed gun are used to collect data from a basic freeway section within Mohammed Al-Qassim freeway that represents the busiest freeway at the city.  The estimated characteristics include the distribution of traffic among the available lanes, desired speed of traffic, lane-changing frequency, and headway distribution.  For traffic distribution, it is found that traffic concentrates more in off side lane compared with other lanes for moderate to high flow rates.  Regression models have been developed based on the available lane distribution data.  The lane found to be increased with the increasing of traffic flow and the desired speeds found to be normally distributed.  Examining the headway data shows that the shifted negative exponential distribution can be used to represent the headway distribution for low to intermediate traffic flow only.  The findings of this work provides a good database for traffic characteristics for Iraqi highways as little effort has been given in previous research work.  


2019 ◽  
Vol 1 (2) ◽  
Author(s):  
Shing Tenqchen ◽  
Yen-Jung Su ◽  
Keng-Pin Chen

This paper proposes a using Cellular-Based Vehicle Probe (CVP) at road-section (RS) method to detect and setup a model for traffic flow information (info) collection and monitor. There are multiple traffic collection devices including CVP, ETC-Based Vehicle Probe (EVP), Vehicle Detector (VD), and CCTV as traffic resources to serve as road condition info for predicting the traffic jam problem, monitor and control. The main project has been applied at Tai # 2 Ghee-Jing roadway connects to Wan-Li section as a trial field on fiscal year of 2017-2018. This paper proposes a man-flow turning into traffic-flow with Long-Short Time Memory (LTSM) from recurrent neural network (RNN) model. We also provide a model verification and validation methodology with RNN for cross verification of system performance.


2021 ◽  
Vol 9 (2) ◽  
pp. 1169-1177
Author(s):  
Sowjanya, Et. al.

In mixed traffic situations, there is weak or no lane behavior of the driver much more complicated where vehicle and driver behavior show a huge difference between them. Road traffic driving behavior on urban midblock sections is one of the most complex phenomena to be examined particularly in heterogeneous traffic conditions. This is often attributed to the capacity of the road section and the traffic flow features at the macroscopic and microscopic level of a road section. Very few researchers have attempted to investigate these features in heterogeneous environments because of the lack of adequate information gathering methods and the amount of complexity involved. In this background, an access controlled mid block road section was selected for video data collection. The main objectives of this study include developing vehicular trajectory data and analyzing the lane changing and vehicle following behavior of driver on the mid block section considering the relative velocities and relative spacing between various types of vehicles under heterogeneous traffic conditions.  The videos were collected from urban roadway in the Kurnool district of Andhra Pradesh. The length of the stretch is 120m and the width is 7.0 m. The data was extracted to know the variations in terms of longitudinal and lateral speeds, velocities, vehicle following and lane changing behavior of the drivers. The data extracted was smoothened by moving average method to minimize the human errors. Lateral amplitude of the vehicles of various types was analyzed. The study revealed that vehicles in the mixed stream, in general and in particular, Bikes and Autos particularly move substantially in the lateral direction.


Author(s):  
Lizhen Lin ◽  
Hongxia Ge ◽  
Rongjun Cheng

Under the Vehicle-to-Vehicle (V2V) environment, connected vehicles (CVs) can share the traveling information with each other to keep the traffic flow stable. However, the open network cooperation environment makes CVs vulnerable to cyberattacks, which leads to changes in driving behavior. The existing theories divide cyberattacks into three types: bogus information, replay/delay and collusion cyberattacks. In addition, the mixed flow consisting of truck and car is a common form of road traffic. In order to clarify the potential impact of cyberattacks on mixed traffic flow, this paper proposes an extended car-following model considering cyberattacks under CVs environment. Subsequently, the stability of the model is analyzed theoretically, and the stability condition of the model is obtained. The numerical simulation is carried out and the result shows that the cyberattacks lead to different degrees of traffic behavior hazards such as queue time extension, congestion and even rear end collision. Among them, cooperative attack is the most serious.


2019 ◽  
Vol 81 (3) ◽  
pp. 1429-1445
Author(s):  
Jiah Song ◽  
Smadar Karni

Sign in / Sign up

Export Citation Format

Share Document