scholarly journals Fibroblast transition to an endothelial “trans” state improves cell reprogramming efficiency

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Megumi Mathison ◽  
Deepthi Sanagasetti ◽  
Vivek P. Singh ◽  
Aarthi Pugazenthi ◽  
Jaya Pratap Pinnamaneni ◽  
...  

AbstractFibroblast reprogramming offers the potential for myocardial regeneration via in situ cell transdifferentiation. We explored a novel strategy leveraging endothelial cell plasticity to enhance reprogramming efficiency. Rat cardiac endothelial cells and fibroblasts were treated with Gata4, Mef2c, and Tbx5 (GMT) to assess the cardio-differentiation potential of these cells. The endothelial cell transdifferentiation factor ETV2 was transiently over-expressed in fibroblasts followed by GMT treatment to assess “trans-endothelial” cardio-differentiation. Endothelial cells treated with GMT generated more cTnT+ cells than did cardiac fibroblasts (13% ± 2% vs 4% ± 0.5%, p < 0.01). Cardiac fibroblasts treated with ETV2 demonstrated increased endothelial cell markers, and when then treated with GMT yielded greater prevalence of cells expressing cardiomyocyte markers including cTnT than did fibroblasts treated with GMT or ETV2 (10.3% ± 0.2% vs 1.7% ± 0.06% and 0.6 ± 0.03, p < 0.01). Rat cardiac fibroblasts treated with GMT + ETV2 demonstrated calcium transients upon electrical stimulation and contractility synchronous with surrounding neonatal cardiomyocytes, whereas cells treated with GMT or ETV2 alone failed to contract in co-culture experiments. Human cardiac fibroblasts treated with ETV2 and then GMT likewise demonstrated greater prevalence of cTnT expression than did cells treated with GMT alone (2.8-fold increase, p < 0.05). Cardiac fibroblast transitioning through a trans-endothelial state appears to enhance cardio-differentiation by enhancing fibroblast plasticity.

2021 ◽  
Vol 2 (2) ◽  
pp. 100556
Author(s):  
Chun Liu ◽  
Pedro Medina ◽  
Dilip Thomas ◽  
Ian Y. Chen ◽  
Karim Sallam ◽  
...  

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Vivekkumar Patel ◽  
Austin Cooney ◽  
Elsa Flores ◽  
Vivek Singh ◽  
Megumi Mathison ◽  
...  

Objective: In situ cellular reprogramming of cardiac fibroblasts into (induced) cardiomyocytes (iCMs) represents a promising new potential intervention for the treatment of heart failure. Despite encouraging in vivo data in rodent myocardial infarction models, the relative resistance of human cells to reprogramming may be a significant barrier to the clinical application of this new therapy. We hypothesized that knockdown of the anti-plasticity gene p63 could therefore be used to enhance cellular reprogramming efficiency. Methods: p63 knockout (KO) murine embryonic fibroblasts (MEFs) and MEFs treated with p63 silencing shRNA were assessed for expression of the cardiomyocyte marker Cardiac Troponin T (cTnT) and pro-cardiogenic genes, with or without the treatment with known cardiac transcription factors Hand2 and Myocardin (HM). Results: After 3 wks in culture, expression of the cardiomyocyte marker cTnT (FACS) was significantly greater in p63 KO MEFs than in wild-type (WT) MEFs or WT MEFs treated with transcription factors Hand2 and Myocardin (39% ± 8%, 2.0% ± 1% and 2.7 ± 0.3%, respectively, p < 0.05). Treatment of p63 KO MEFs with Hand2 and Myocardin further increased cTnT expression up to 74% ± 3%. Treatment of WT MEFs with p63 shRNA likewise yielded a 20-fold increase in cTnT expression (qPCR) without HM and a 600-fold increase with HM when compared to non-silencing shRNA treated MEFs. Consistent with these findings, p63 KO or p63 shRNA-treated MEFs demonstrated increased expression (qPCR) of pro-cardiogenic genes Gata4, Mef2c and Tbx5 compared to naïve or non-silencing shRNA treated MEFs. After treatment with p63 shRNA, adult human epidermal cells also demonstrated increased expression of cTnT, myosin heavy chain and pro-cardiogenic genes when analyzed by qPCR. Conclusions: Downregulation of the anti-plasticity gene p63 enhances cellular reprogramming efficiency and iCM generation, as reflected in the increased expression of the cardiomyocyte marker cTnT and pro-cardiogenic genes Gata4, Mef2c and Tbx5. Use of such cellular plasticity enhancing strategies may be a useful strategy to overcome barriers to cellular reprogramming in the clinical arena.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2107-2107
Author(s):  
Anna J Hernandez ◽  
Sonia Henriquez ◽  
Enrique R Maldonado ◽  
Rodeler Youte ◽  
Gregory N Prado ◽  
...  

Abstract Abstract 2107 Endothelial cell activation and elevated levels of circulating Endothelin-1 (ET-1) have been reported in patients with atherosclerosis and sickle cell disease (SCD). ET-1 is a well-described vasoconstrictor, mitogen and regulator of endothelial cells migration that has been shown to promote structural changes in blood vessels. ET-1 is produced in response to increases in vasoactive hormones, growth factors, hypoxia, shear stress and free radicals, events that are commonly observed in patients with SCD. Endothelial cell activation is in part characterized by increases of cytokines such as monocyte chemotactic protein-1 (MCP-1) and growth factors that are important in vascular maintenance and fibrogenesis such as connective tissue growth factor (CTGF) and vascular endothelial growth factor (VEGF). CTGF and VEGF are important for blood vessel remodeling, fibrogenesis and angiogenesis. Indeed there is evidence that incubation of smooth muscle cells with ET-1 leads to increases in CTGF and VEGF levels. However, the relationship between ET-1 and CTGF in endothelial cell activation is unclear. We hypothesize that increasing ET-1 would stimulate CTGF production and endothelial cell activation. We studied the effects of ET-1 on the human endothelial cell line, EA.hy926 (EA), as well as in primary cultures of mouse aortic endothelial cells (MAEC). We performed gene expression time course experiments (0, 2, 4, 8, 16, 24 Hr) on EA cells following incubation with 100nM ET-1 using quantitative RT-PCR with Taqman chemistries and GAPDH and beta-actin as endogenous controls. We observed increases of CTGF and VEGF expression between 4 and 8 hr for CTGF (1.74 fold increase vs time 0, n=6, P<0.03) and 4 hr for VEGF (2.14 fold increase vs time 0, n=3, P<0.04). Additional experiments on EA cells showed that incubation with 100nM ET-1 for 4 hr in the presence of BQ123 and BQ788, two inhibitors of ET-1 type A and B receptors, respectively, blocked the ET-1 stimulated rises in CTGF and VEGF as well as MCP-1 expression. We then performed western blot analyses (Abcam-CTGF antibody ab6992; Abcam VEGF antibody ab1316) and showed increases in cell associated CTGF protein levels following incubation of EA cells with 100nM ET-1 for 24 hr. The ET-1 stimulated rise in CTGF levels were significantly blunted by pre-incubation of EA cells with both BQ788 and BQ123. To study whether the effects of ET-1 were unique to EA cells, we also analyzed the effects of ET-1 on early cultures of MAEC isolated from C57BLJ mice. Consistent with our observations in human endothelial cells, incubation of MAEC with 100nM ET-1 for 4 hr were associated with increases of CTGF and VEGF expression (1.86 fold vs vehicle, n=3, P<0.03; 1.73 fold vs vehicle, n=3 P<0.04 respectively). Furthermore, ET-1 stimulated rises in CTGF and VEGF expressions were likewise blocked by pre-incubation with BQ123 andBQ788. We conclude that addition of ET-1 leads to activation of endothelial cells and increases in CTGF and VEGF from human and mouse endothelial cells. Thus we suggest that therapies designed to block ET-1 receptors will reduce endothelial cell activation in part by reducing CTGF production leading to alterations in cellular and tissue architecture. This work was supported by NIH R01HL090632 to AR and R01HL096518 to JRR. Disclosures: No relevant conflicts of interest to declare.


1997 ◽  
Vol 273 (1) ◽  
pp. L275-L281 ◽  
Author(s):  
M. Geiger ◽  
A. Stone ◽  
S. N. Mason ◽  
K. T. Oldham ◽  
K. S. Guice

Phenotypic heterogeneity among endothelial cell populations may account for important organ-specific behaviors. Experimental evidence suggests that endothelium-derived nitric oxide mediates certain of these unique responses. The purpose of these investigations was to compare rat pulmonary microvascular endothelial cells with pulmonary artery and aortic macrovascular endothelial cells in their ability to generate nitric oxide (NO). Cultures of these microvascular and macrovascular endothelial cells were incubated with interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), and Salmonella typhimurium lipopolysaccharide (LPS) alone or in combination, and nitrite production was measured. Single-agent exposure with IFN-gamma (up to 1,000 U/ml), TNF-alpha (up to 60,000 U/ml), or LPS (up to 500 ng/ml) had little effect on nitrite generation. Nitrite production by rat aortic macrovascular endothelial cells (RAEC) was significantly greater than that by the rat lung microvascular endothelial cells (RLMVEC) when stimulated with TNF-alpha + IFN-gamma, LPS + IFN-gamma, or TNF-alpha + LPS. The maximal response by all endothelial cell types (approximately 15-fold increase in RAEC and 8-fold increase in RLMVEC) was observed with LPS + IFN-gamma. The nitrite generation from rat pulmonary artery endothelial cells was intermediate between RAEC and RLMVEC responses when stimulated with IFN-gamma + LPS or TNF-alpha. Similar patterns of heterogeneous inducible nitric oxide synthase mRNA induction occurred when Northern analysis of specimens from the cultured endothelial cell types was done. These data suggest that phenotypic heterogeneity between these endothelial cell populations is substantial and, by inference, that site-specific NO. generation may occur.


2005 ◽  
Vol 17 (9) ◽  
pp. 79
Author(s):  
Q. Chen ◽  
P. Stone ◽  
L. McCowan ◽  
L. Chamley

A number of studies suggest that there is a generalized endothelial cell activation and inflammatory response in preeclampsia, which may be caused by factors released from the placenta including deported trophoblasts. Trophoblasts are the placental cells that are bathed in maternal blood during pregnancy and as they become aged or damaged trophoblasts are shed from the placenta and deported into the maternal circulation. The fate of deported trophoblasts is unknown but we have found that endothelial cells can phagocytose dead trophoblasts. The aim of this study was to examine the effects of phagocytosing dead trophoblasts on endothelial cell–monocyte interactions. Methods: The trophoblast-derived cell lines Jar and Jeg-3 were induced to undergo necrotic death by freeze/thawing or apoptotic death by exposure to UV light. HMEC-1 endothelial cells were labeled with green fluorescent cell tracker stain and then exposed to necrotic or apoptotic trophoblasts for 3 or 24 h. U937 (monocyte) cells were labeled with red fluorescent stain and incubated with the HMEC-1 monolayers for 3 or 24 h. The adhesion of the U937 cells to the HMEC-1 monolayers was quantified by flow cytometry and compared to the adhesion of U937 cells to untreated HMEC-1 monolayers. Results: Exposing the HMEC-1 cells to necrotic, but not apoptotic, trophoblasts induced an approximately two-fold increase in the adhesion of U937 cells to the HMEC-1 monolayers (P = 0.01). The findings were consistent regardless of whether the HEMC-1 cells were exposed to the dead trophoblasts for 3 or 24 h. Conclusions: We have previously shown that endothelial cells phagocytose both apoptotic and necrotic trophoblasts. The results of the current study suggest that shedding necrotic trophoblasts from the placenta could induce endothelial cells to become activated resulting in increased leucocyte adhesion. Thus, dead trophoblasts may be one of the factors released from the placenta that induce preeclampsia.


1992 ◽  
Vol 263 (1) ◽  
pp. L113-L121 ◽  
Author(s):  
N. Marczin ◽  
U. S. Ryan ◽  
J. D. Catravas

Guanosine 3',5'-cyclic monophosphate (cGMP) accumulation in single and cocultures of calf pulmonary arterial endothelial (CPAE) and rabbit pulmonary arterial smooth muscle cells (RPASM) was investigated to discover whether endothelial cGMP is involved in the feedback regulation of basally released endothelium-derived relaxing factor (EDRF). Endothelial cell-induced increases in smooth muscle cGMP levels were inhibited by competitive inhibitors of endothelial nitric oxide synthesis, NG-monomethyl-L-arginine and N omega-nitro-L-arginine, in both long-term cocultures and short-term bioassay. Such treatment had no effect on endothelial content of cGMP. Coculture cGMP accumulation was stimulated (twofold increases) by endothelium-dependent vasodilators, bradykinin and acetylcholine. Bradykinin and acetylcholine did not elicit cGMP accumulation in single cultures of either smooth muscle or endothelial cells. To investigate the underlying mechanism(s) of dissociation in cGMP accumulation between cocultures and single endothelial cell cultures, the distribution profile of guanylate cyclase isoforms was determined by stimulating CPAE and RPASM cells with vasodilators activating selectively the soluble or particulate isoenzymes. Both nitrovasodilators, sodium nitroprusside and a putative EDRF, S-nitroso-L-cysteine, produced a 20-fold increase in cGMP content of RPASM cells only, having no effect on endothelial cells. Conversely, atriopeptin II caused 80-fold increases in endothelial cells. Exposure of the short-term bioassay system to 100 nM atriopeptin II, which caused 60-fold increases in CPAE cGMP levels, did not affect basal EDRF-induced smooth muscle cell cGMP accumulation, suggesting that a cGMP-mediated negative feedback mechanism does not appear to be involved in the regulation of basally released EDRF in culture.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Lampson M Fan ◽  
Vinoj George ◽  
Gavin Brooks ◽  
Jian-Mei Li

The abilities of endothelial cells to proliferate, to be quiescent in monolayer and to undergo apoptosis during remodeling are important determinants relating to angiogenesis, wound healing and many diseases including atherosclerosis. During ischemia, angioplasty or organ transplantation, endothelial cells experience sustained nutrient deprivation (starvation), which causes cell oxidative stress and apoptosis. Endothelial cells express constitutively an NADPH oxidase, which is a major source of superoxide production. The catalytic subunit of NADPH oxidase has several isoforms (Nox1–5). However, their individual roles in endothelial function remain unknown. In this study, we investigated the role of Nox2 in nutrient deprivation-induced cell cycle arrest and apoptosis. In proliferating human dermal microvascular EC (HMEC1), Nox2 mRNA expression was low relative to Nox4 (Nox2:Nox4~1:13), but was upregulated 24h after starvation and increased to 8±3.5-fold at 36h of starvation as detected by quantitative real-time PCR. Accompanying the upregulation of Nox2, there was a 2.28±0.18-fold increase in O 2 .− production detected by tiron (O 2 −. scavenger)-inhibitable lucigenin (5 μM)-chemiluminescence; a dramatic induction of p21 cip1 and p53 protein expression detected by immunoblotting; cell cycle arrest and the onset of cell apoptosis detected by propidium-iodide FACS analysis (all P<0.05). All these changes were inhibited significantly by adding apocynin (an NADPH oxidase inhibitor), or by in vitro deletion of Nox2 expression using full-length antisense Nox2 cDNA, or in coronary microvascular endothelial cells isolated from Nox2 knockout mice. In Nox2 knockout cells, although there was a 3.8±0.5-fold increase in Nox4 mRNA expression after 36h of starvation (P<0.01), neither O 2 .− production nor the p21 cip1 and p53 expressions were increased significantly and only 0.46% of cells were apoptotic compared to ~12% apoptotic cells found in wild-type control cells cultured under the same condition. In conclusion, Nox2-derived O 2 .− , through the modulation of p21 cip1 and p53 expression, participates in the regulation of endothelial cell cycle control and apoptosis.


2004 ◽  
Vol 167 (2) ◽  
pp. 351-363 ◽  
Author(s):  
Katsuhisa Matsuura ◽  
Hiroshi Wada ◽  
Toshio Nagai ◽  
Yoshihiro Iijima ◽  
Tohru Minamino ◽  
...  

The concept of the plasticity or transdifferentiation of adult stem cells has been challenged by the phenomenon of cell fusion. In this work, we examined whether neonatal cardiomyocytes fuse with various somatic cells including endothelial cells, cardiac fibroblasts, bone marrow cells, and endothelial progenitor cells spontaneously in vitro. When cardiomyocytes were cocultured with endothelial cells or cardiac fibroblasts, they fused and showed phenotypes of cardiomyocytes. Furthermore, cardiomyocytes reentered the G2-M phase in the cell cycle after fusing with proliferative noncardiomyocytes. Transplanted endothelial cells or skeletal muscle–derived cells fused with adult cardiomyocytes in vivo. In the cryoinjured heart, there were Ki67-positive cells that expressed both cardiac and endothelial lineage marker proteins. These results suggest that cardiomyocytes fuse with other cells and enter the cell cycle by maintaining their phenotypes.


1997 ◽  
Vol 273 (1) ◽  
pp. C239-C245 ◽  
Author(s):  
G. C. Haralabopoulos ◽  
D. S. Grant ◽  
H. K. Kleinman ◽  
M. E. Maragoudakis

We have tested the effect of thrombin on endothelial cell tube formation in vitro and angiogenesis in vivo. Thrombin induces the differentiation of endothelial cells into capillary structures in a dose-dependent fashion (0.1-0.3 units thrombin/ml) on Matrigel, a laminin-rich reconstituted basement membrane matrix. At higher thrombin concentrations (1.0 unit/ml), a suppression of tube formation is evident, probably due to downregulation (desensitization) of the thrombin receptor. D-Phe-Pro-Arg-CH2Cl-thrombin is without effect when used alone, but it abolishes the tube-promoting effect of thrombin when used in combination with thrombin, indicating the involvement of the catalytic site of thrombin. Activation of protein kinase C (PKC) seems to be the transduction mechanism involved in the stimulation of tube formation by thrombin. Ro-318220 (3 micrograms/ml), a specific inhibitor of PKC, completely abolishes the stimulatory effect of thrombin. In the in vivo Matrigel system of angiogenesis, there is a 10-fold increase in endothelial cell infiltration in response to thrombin. These results provide evidence for the angiogenesis-promoting effect of thrombin in vivo and the induction by thrombin of the angiogenic phenotype of endothelial cells in vitro in the absence of other cell types such as smooth muscle cells, pericytes, and inflammatory cells.


1998 ◽  
Vol 275 (1) ◽  
pp. C75-C81 ◽  
Author(s):  
J. Xavier-Neto ◽  
A. C. Pereira ◽  
A. H. Motoyama ◽  
J. E. Krieger

cAREL is a cAMP-responsive endothelial cell line carrying a luciferase reporter gene introduced by stable transfection of a luciferase enhancer trap into rabbit aortic endothelial cells. Luciferase gene expression in cAREL was stimulated 233-fold by 8-BrcAMP. Treatment with the β-adrenoceptor agonist isoproterenol induced a 7.0-fold increase in luciferase expression, which was partially blocked by either β1- or β2-adrenoceptor antagonists and totally blocked by propranolol and by a combination of β1- plus β2-adrenoceptor antagonists. Receptor stimulation was mimicked by cholera toxin, forskolin, 8-BrcAMP, and isobutylmethylxanthine but not by 8BrcGMP, dexamethasone, or phorbol 12-myristate 13-acetate. Stimulation by isoproterenol was completely blocked by H-89, a protein kinase A inhibitor. cAREL was also stimulated by A-23187, and this effect was abrogated by EGTA and H-89. cAREL is the first cAMP-sensitive endothelial cell line described, and it can be useful as a positive control, as a model for cAMP regulation, as a background to genetic introduction of receptors, as an indicator of intracellular pathway activation, and as a tool to investigate cAMP effects on other signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document