scholarly journals Global carbon sequestration through continental chemical weathering in a climatic change context

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Juan Luis Lechuga-Crespo ◽  
Sabine Sauvage ◽  
Estilita Ruiz-Romera ◽  
Michelle T. H. van Vliet ◽  
Jean-Luc Probst ◽  
...  

AbstractThis study simulates carbon dioxide (CO2) sequestration in 300 major world river basins (about 70% of global surface area) through carbonates dissolution and silicate hydrolysis. For each river basin, the daily timescale impacts under the RCP 2.6 and RCP 8.5 climate scenarios were assessed relative to a historical baseline (1969–1999) using a cascade of models accounting for the hydrological evolution under climate change scenarios. Here we show that the global temporal evolution of the CO2 uptake presents a general increase in the annual amount of CO2 consumed from 0.247 ± 0.045 Pg C year−1 to 0.261 and 0.273 ± 0.054 Pg C year−1, respectively for RCP 2.6 and RCP 8.5. Despite showing a general increase in the global daily carbon sequestration, both climate scenarios show a decrease between June and August. Such projected changes have been mapped and evaluated against changes in hydrology, identifying hot spots and moments for the annual and seasonal periods.

2021 ◽  
Author(s):  
Juan Luis Lechuga-Crespo ◽  
Sabine Sauvage ◽  
Michelle vanVliet ◽  
Estilita Ruiz-Romera ◽  
Jean-Luc Probst ◽  
...  

Abstract Here, we simulate carbon dioxide (CO2) sequestration in 300 major world river basins (about 70% of global surface area) through carbonates dissolution and silicate hydrolysis. For each river basin, the daily timescale impacts under both the RCP 2.6 and RCP 8.5 climate scenarios were assessed relative to a historic baseline (1969-1999) using a cascade of models accounting for the hydrological evolution under climate change scenarios. Here we show that global temporal evolution of the CO2 uptake presents a general increase in the annual amount of CO2 consumed from 0.247 Pg C·y-1 to 0.261 and 0.273 Pg C·y-1, respectively for RCP 2.6 and RCP 8.5. Besides, despite showing a general increase for the global daily carbon sequestration, both climate scenarios present a decrease between June and August. Such projected changes have been mapped and evaluated against changes in hydrology, identifying hot spots and moments for the annual and seasonal periods.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1335
Author(s):  
Paola Faggian

To support the development of national adaptation policies and measures addressing climate change impacts over Italy, this work aims to analyze projected changes in mean temperatures and precipitations, and extreme events such as droughts and floods, highlighting some local trends in the different Italian regions that have been little considered to date. The investigations are made on the basis of a set of high-resolution Euro-CORDEX models (horizontal resolution 0.11°, about 12 km) to infer quantitative assessments about the danger of climate changes under three different Representative Concentration Pathways (RCPs): business as usual scenario, i.e., without a reduction in green-house gas emissions (RCP 8.5), medium stabilization scenario (RCP 4.5) and mitigation scenario (RCP 2.6). After filtering the models with limited performances in reconstructing the current climate, the multi-model climate change scenarios were characterized by comparing the ensemble mean values computed for the base-line period (1971–2000) with those elaborated for the short- (2021–2050), medium- (2041–2070) and long-term (2071–2100). Two WMO ETCCDI indices were considered to investigate climate extremes: Consecutive Dry Days and extreme precipitations. Despite some uncertainties (related to discrepancies among the models), drought conditions and extreme precipitations will likely exacerbate in the coming decades without mitigation (RCP 8.5). Such conditions will be less critical if partial mitigation actions will be undertaken (RCP 4.5) and are expected to be significantly reduced with decarbonization policies (RCP 2.6).


2018 ◽  
Vol 156 (9) ◽  
pp. 1061-1069 ◽  
Author(s):  
G. Sujetovienė ◽  
R. Velička ◽  
A. Kanapickas ◽  
Z. Kriaučiūnienė ◽  
D. Romanovskaja ◽  
...  

AbstractThough the number of climate-change-related agro-phenological investigations are growing rapidly, the attention paid to spring crops has been much less than to winter ones. The objective of the current study was to investigate long-term temporal and spatial trends of spring barley phenology and to project changes in the timing and duration of different phenological phases during the current century. Higher temperatures significantly affected the potential scheduling of agricultural practices, accelerating the occurrence of sowing and emergence dates. Historical trends in harvest dates of spring barley showed a slight delay. These changes resulted in the extension of the total vegetative period of spring barley by >12 days over the period investigated (1961–2015). Since Lithuania is situated on the Baltic Sea, an increase in temperature along with an increase in distance from the sea was characteristic over the last 55 years. Projected changes in the occurrence of phenological phases of spring barley differ significantly from analysed historical changes and advancement of all phenological phases have been projected according to both Representative Concentration Pathway (RCP) 2.6 and RCP 8.5 climate change scenarios. Shortening of the total vegetative period by 5 days is foreseen for the far (2071–2100) future according to the pessimistic (RCP 8.5) climate change scenario.


Author(s):  
Javier Lo Parra ◽  
Jacinto Garrido Velarde ◽  
Jesus Barrena González ◽  
Manuel Pulido Fernández

Semiarid ecosystems of Chile with Mediterranean climate support high demographic rates and maintain important economies associated with the productivity of the natural environment; however, they strongly depend on the water availability and their future is compromised by climate variations. This study tries to define the role of hydrological variables on the growth of herbaceous biomass under the current climate and under future weather variations. For this, the authors used meteorological stations which let them estimate the water balance at plot scale and spectral reflectance sensors which let them follow the dynamics of the NDVI of herbaceous plants. In this context, the NDVI value was about 0.7, which means approximately 3700 kg DM ha1. However, under the worst-case climate change scenarios (RCP 8.5), annual precipitation showed a reduction of up to 31.6% regarding the present period. In this situation, the NDVI could be reduced up to 80% respect to the current situation. Thus, if climate changes to its worst scenario, it could threaten the maintenance and productivity of these ecosystems.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2101
Author(s):  
Christian Charron ◽  
André St-Hilaire ◽  
Taha B.M.J. Ouarda ◽  
Michael R. van den Heuvel

Simulation of surface water flow and temperature under a non-stationary, anthropogenically impacted climate is critical for water resource decision makers, especially in the context of environmental flow determination. Two climate change scenarios were employed to predict streamflow and temperature: RCP 8.5, the most pessimistic with regards to climate change, and RCP 4.5, a more optimistic scenario where greenhouse gas emissions peak in 2040. Two periods, 2018–2050 and 2051–2100, were also evaluated. In Canada, a number of modelling studies have shown that many regions will likely be faced with higher winter flow and lower summer flows. The CEQUEAU hydrological and water temperature model was calibrated and validated for the Wilmot River, Canada, using historic data for flow and temperature. Total annual precipitation in the region was found to remain stable under RCP 4.5 and increase over time under RCP 8.5. Median stream flow was expected to increase over present levels in the low flow months of August and September. However, increased climate variability led to higher numbers of periodic extreme low flow events and little change to the frequency of extreme high flow events. The effective increase in water temperature was four-fold greater in winter with an approximate mean difference of 4 °C, while the change was only 1 °C in summer. Overall implications for native coldwater fishes and water abstraction are not severe, except for the potential for more variability, and hence periodic extreme low flow/high temperature events.


Author(s):  
Sonam S. Dash ◽  
Dipaka R. Sena ◽  
Uday Mandal ◽  
Anil Kumar ◽  
Gopal Kumar ◽  
...  

Abstract The hydrologic behaviour of the Brahmani River basin (BRB) (39,633.90 km2), India was assessed for the base period (1970–1999) and future climate scenarios (2050) using the Soil and Water Assessment Tool (SWAT). Monthly streamflow data of 2000–2009 and 2010–2012 was used for calibration and validation, respectively, and performed satisfactorily with Nash-Sutcliffe Efficiency (ENS) of 0.52–0.55. The projected future climatic outcomes of the HadGEM2-ES model indicated that minimum temperature, maximum temperature, and precipitation may increase by 1.11–3.72 °C, 0.27–2.89 °C, and 16–263 mm, respectively, by 2050. The mean annual streamflow over the basin may increase by 20.86, 11.29, 4.45, and 37.94% under RCP 2.6, 4.5, 6.0, and 8.5, respectively, whereas the sediment yield is likely to increase by 23.34, 10.53, 2.45, and 27.62% under RCP 2.6, 4.5, 6.0, and 8.5, respectively, signifying RCP 8.5 to be the most adverse scenario for the BRB. Moreover, a ten-fold increase in environmental flow (defined as Q90) by the mid-century period is expected under the RCP 8.5 scenario. The vulnerable area assessment revealed that the increase in moderate and high erosion-prone regions will be more prevalent in the mid-century. The methodology developed herein could be successfully implemented for identification and prioritization of critical zones in worldwide river basins.


Beskydy ◽  
2017 ◽  
Vol 10 (1-2) ◽  
pp. 123-134
Author(s):  
Aleš Farda ◽  
Petr Štěpánek ◽  
Pavel Zahradníček ◽  
Petr Skalák ◽  
Jan Meitner

We have investigated the future changes of climate conditions during the winter season in the Beskids Mountains. During the 21st century mean winter temperature will increase by 2.0–6.3 °C and winter precipitation will increase by 12.5 – to 17.5 % - depending on the scenario. Higher winter temperatures will be reflected in the reduced number of frost days, the number of which may drop by 40 % according to the RCP8.5 scenario. Whilst our study expects general increase in precipitation, higher temperatures will lead to an increased evapotranspiration and also change in the form of precipitation from solid (snow, rime) to liquid (rain, drizzling). Such trends could further propel the unfavorable changes in the water balance budget.


2021 ◽  
Author(s):  
Emmanuel Junior Zuza ◽  
Yoseph Negusse Araya ◽  
Kadmiel Maseyk ◽  
Shonil A Bhagwat ◽  
Kaue de Sousa ◽  
...  

Climate change is altering suitable areas of crop species worldwide, with cascading effects on people and animals reliant upon those crop species as food sources. Macadamia is one of Malawi's most important and profitable crop species. Here, we used an ensemble model approach to determine the current distribution of macadamia producing areas across Malawi in relation to climate. For future distribution of suitable areas, we used the climate outputs of 17 general circulation models (GCM's) based on two climate change scenarios (RCP 4.5 and RCP 8.5). We found that the precipitation of the driest month and isothermality were the climatic variables that strongly influenced macadamia's suitability in Malawi. These climatic requirements were fulfilled across many areas in Malawi under the current conditions. Future projections indicated that large parts of Malawi's macadamia growing regions will remain suitable for macadamia, amounting to 36,910 km2 (39.1%) and 33,511 km2 (35.5%) of land based on RCP 4.5 and RCP 8.5, respectively. Of concern, suitable areas for macadamia production are predicted to shrink by −18% (17,015 km2) and −22% (20,414 km2) based on RCP 4.5 and RCP 8.5, respectively, with much of the suitability shifting northwards. Although a net loss of area suitable for macadamia is predicted, some currently unsuitable areas will become suitable in the future. Notably, suitable areas will increase in Malawi's central and northern regions, while the southern region will lose most of its suitable areas. In conclusion, our study provides critical evidence that climate change will significantly affect the macadamia sub-sector in Malawi. Therefore area-specific adaptation strategies are required to build resilience.


2021 ◽  
Vol 48 (2) ◽  
Author(s):  
Ayse Gul Sarikaya ◽  
◽  
Omer K. Orucu ◽  

Arbutus andrachne L., the strawberry tree, is an evergreen shrub or small tree in the Turkish flora and has broad uses. The wood is used for decorative purposes, packaging, and manufacturing furniture. The fruits are edible and used in treating many kinds of diseases. However, global warming might affect the abundance of this symbolic plant's distribution, especially at higher latitudes. This study was conducted to determine the expected effects of climate change on A. andrachne. For this purpose, Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 were used to expect climate change scenarios for 2050 and 2070, and potential distribution areas of A. andrachne were presented. The results indicated that the distribution of A. andrachne would decrease in the southern regions of Turkey. However, the spread of the species could be expanded in the western and northern areas. It is also expected that there would be potential habitat losses, which would affect the distribution of A. andrachne.


2017 ◽  
Vol 14 (2) ◽  
pp. 301-310 ◽  
Author(s):  
Carlos M. Duarte

Abstract. Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain hidden in representations of the global carbon budget. Despite being confined to a narrow belt around the shoreline of the world's oceans, where they cover less than 7 million km2, vegetated coastal habitats support about 1 to 10 % of the global marine net primary production and generate a large organic carbon surplus of about 40 % of their net primary production (NPP), which is either buried in sediments within these habitats or exported away. Large, 10-fold uncertainties in the area covered by vegetated coastal habitats, along with variability about carbon flux estimates, result in a 10-fold bracket around the estimates of their contribution to organic carbon sequestration in sediments and the deep sea from 73 to 866 Tg C yr−1, representing between 3 % and 1∕3 of oceanic CO2 uptake. Up to 1∕2 of this carbon sequestration occurs in sink reservoirs (sediments or the deep sea) beyond these habitats. The organic carbon exported that does not reach depositional sites subsidizes the metabolism of heterotrophic organisms. In addition to a significant contribution to organic carbon production and sequestration, vegetated coastal habitats contribute as much to carbonate accumulation as coral reefs do. While globally relevant, the magnitude of global carbon fluxes supported by salt-marsh, mangrove, seagrass and macroalgal habitats is declining due to rapid habitat loss, contributing to loss of CO2 sequestration, storage capacity and carbon subsidies. Incorporating the carbon fluxes' vegetated coastal habitats' support into depictions of the carbon budget of the global ocean and its perturbations will improve current representations of the carbon budget of the global ocean.


Sign in / Sign up

Export Citation Format

Share Document