scholarly journals Intercellular interactions between mast cells and stromal fibroblasts obtained from canine cutaneous mast cell tumours

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lidia H. Pulz ◽  
Yonara G. Cordeiro ◽  
Greice C. Huete ◽  
Karine G. Cadrobbi ◽  
Arina L. Rochetti ◽  
...  

AbstractMast cell tumours (MCTs) are the most frequent malignant skin neoplasm in dogs. Due to the difficulty in purifying large numbers of canine neoplastic mast cells, relatively little is known about their properties. A reproducible in vitro model is needed to increase the understanding about the phenotype and functional properties of neoplastic mast cells. In the present study, we describe the establishment of primary cocultures of neoplastic mast cells from canine cutaneous MCTs and cancer-associated fibroblasts. We confirmed the inability of canine neoplastic mast cells to remain viable for long periods in vitro without the addition of growth factors or in vivo passages in mice. Using a transwell system, we observed that mast cell viability was significantly higher when there is cell-to-cell contact in comparison to non-physical contact conditions and that mast cell viability was significantly higher in high-grade than in low-grade derived primary cultures. Moreover, the use of conditioned medium from co-cultured cells led to a significantly higher tumoral mast cell viability when in monoculture. Signalling mechanisms involved in these interactions might be attractive therapeutic targets to block canine MCT progression and deserve more in-depth investigations.

Blood ◽  
1983 ◽  
Vol 62 (6) ◽  
pp. 1251-1260 ◽  
Author(s):  
MA Horton ◽  
HA O'Brien

Abstract Recent studies in rodents have demonstrated that mast cells derived from lymphoid tissues can be grown in longterm culture, provided that supportive growth factors or stromal fibroblasts are added; such findings have not been reported in man. Furthermore, although a hemopoietic origin for mast cells is supported by transplantation studies in mice, the exact origin of the human mast cell or its relationship to the circulating basophil and other hemopoietic cell lineages is unknown. We have investigated the requirements for in vitro growth of human mast cells derived from the infiltrated bone marrow of a patient with systemic mastocytosis, and have characterized both the mast cells proliferating in these cultures and those obtained from splenic infiltrates. Our data approached two questions: (1) Is there any evidence for the origin of mast cells from a bone-marrow-derived stem cell, and, if so, (2) what lineage relationship is there between mast cells and granulopoietic cells, including basophils? First, we have shown the expression of hemopoietic tissue-specific antigens by mast cells, strongly supporting a bone marrow origin for the mast cell in man (at least for those mast cells analyzed here). Second, the complete lack of granulocyte-monocyte markers contrasts with the phenotype of the basophil and suggests that mast cells diverge considerably from other granulopoietic cells during the acquisition of their differentiated specialized functions.


2014 ◽  
Vol 306 (11) ◽  
pp. G974-G982 ◽  
Author(s):  
Xiang Zhu ◽  
Eucabeth Mose ◽  
Simon P. Hogan ◽  
Nives Zimmermann

Extracellular acidification has been observed in allergic inflammatory diseases. Recently, we demonstrated that the proton-sensing receptor G protein-coupled receptor 65 (GPR65) regulates eosinophil survival in an acidic environment in vitro and eosinophil accumulation in an allergic lung inflammation model. For mast cells, another inflammatory cell type critical for allergic responses, it remains unknown whether GPR65 is expressed and/or regulates mast cell viability. Thus, in the present study, we employed in vitro experiments and an intestinal anaphylaxis model in which both mastocytosis and eosinophilia can be observed, particularly in the gastrointestinal tract, to enable us to directly compare the effect of GPR65 expression on these two cell types. We identified GPR65 expression on mast cells; however, unlike eosinophil viability, mast cell viability in vitro is not affected by acidification or GPR65 expression. Mechanistically, we determined that mast cells do not respond to extracellular acidification with increased cAMP levels. Furthermore, in the intestinal anaphylaxis model, we observed a significant reduction of eosinophils (59.1 ± 9.2% decrease) in the jejunum of allergen-challenged GPR65-deficient mice compared with allergen-challenged wild-type mice, despite the degree of antigen sensitization and the expression levels of Th2 cytokines ( Il4, Il13) and eosinophil chemokines ( Ccl11, Ccl24) in the jejunum being comparable. In contrast, the accumulation of mast cells in allergen-challenged mice was not affected by GPR65 deficiency. In conclusion, our study demonstrates differential regulation of eosinophils and mast cells in inflammatory tissue, with mast cell viability and accumulation being independent of GPR65.


Blood ◽  
1983 ◽  
Vol 62 (6) ◽  
pp. 1251-1260
Author(s):  
MA Horton ◽  
HA O'Brien

Recent studies in rodents have demonstrated that mast cells derived from lymphoid tissues can be grown in longterm culture, provided that supportive growth factors or stromal fibroblasts are added; such findings have not been reported in man. Furthermore, although a hemopoietic origin for mast cells is supported by transplantation studies in mice, the exact origin of the human mast cell or its relationship to the circulating basophil and other hemopoietic cell lineages is unknown. We have investigated the requirements for in vitro growth of human mast cells derived from the infiltrated bone marrow of a patient with systemic mastocytosis, and have characterized both the mast cells proliferating in these cultures and those obtained from splenic infiltrates. Our data approached two questions: (1) Is there any evidence for the origin of mast cells from a bone-marrow-derived stem cell, and, if so, (2) what lineage relationship is there between mast cells and granulopoietic cells, including basophils? First, we have shown the expression of hemopoietic tissue-specific antigens by mast cells, strongly supporting a bone marrow origin for the mast cell in man (at least for those mast cells analyzed here). Second, the complete lack of granulocyte-monocyte markers contrasts with the phenotype of the basophil and suggests that mast cells diverge considerably from other granulopoietic cells during the acquisition of their differentiated specialized functions.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Brisa Pena ◽  
Valentina Martinelli ◽  
Susanna Bosi ◽  
Carmen Sucharov ◽  
Mark Jeong ◽  
...  

Background: Advances in cell therapy and material science have made tissue engineering a promising strategy for heart regeneration. We developed an injectable biomimetic reverse thermal gel (RTG) that is liquid at room temperature but gel-like at body temperature, with the ultimate goal of being able to serve as a vehicle for cell-based delivery (liquid) to targeted tissue areas (gel-phase at 37°C). In this study we tested the suitability of this biomimetic RTG on cell viability. Methods and results: We tested different biomimetic RTG systems with and without the chemical incorporation of lysine. In vitro 3D culture experiments were performed with neonatal rat ventricular myocytes (NRVM) by mixing 3x104 cells with 50 μl of polymeric solution and allowing gel formation at 37°C. The cultured cells were incubated for 21 days. For controls we used NRVMs plated on 2D traditional gelatin coated dishes. We found that the 3D polymeric matrix induces rapid coordinated contraction with improved functionality when compared with standard 2D-cultured NRVM. By immunostaining for the morphology of the sarcomere (alpha-actinin) and DAPI, we also observed that the 3D polymeric matrix stimulates cells to spread and form 3D syncytia. Conclusion: These proof-of-concept results demonstrate long-term cell viability in this unique biomimetic system and therefore provide feasibility of a polymeric cell delivery system that permits reversible liquid-to-gel transition at body temperature. These results offer potential for a tissue engineering approach to cardiac regeneration.


Author(s):  
Bhong Prabha N. ◽  
Naikawade Nilofar. S. ◽  
Mali Pratibha. R. ◽  
Bindu Madhavi. S.

Objectives: The present study designed to evaluate the Antiasthmatic activity of aqueous extract of bark of Eugenia Jambolana (AEEJ) on in vitro and in vivo animal models. Materials and methods: Different in vitro and in vivo animal models was used to study the anti asthmatic activity as isolated goat tracheal chain preparation, Acetylcholine and Histamine induced bronconstriction in guinea pigs, effect of drug extract on histamine release from mast cell was checked by clonidine-induced mast cell degranulation, and milk-induced eosinophilia and leukocytosis. Results: In-vitro study on goat tracheal chain preparation revealed that aqueous extract of Eugenia jambolana (AEEJ)bark exerted antagonistic effect on the histamine induced contraction. (P<0.05) The guinea pigs when exposed to 0.2% histamine aerosol showed signs of progressive dyspnoea leading to convulsions. AEEJ significantly prolonged the latent period of convulsions (PCT) as compared to control following the exposure of histamine (0.2%) aerosol (P<0.01). The observation of present study indicates aqueous extract of Eugenia jambolana shows significant inhibition of milk induced eosinophilia and leukocytosis. Group of animals pretreated with aqueous Eugenia jambolana bark extract showed significant reduction in degranulation of mast cells when challenged with clonidine. The prevention of degranulation process by the aqueous Eugenia jambolana bark extract (P<0.01) indicates a possible stabilizing effect on the mast cells, indicating mast cell stabilizing activity. Conclusions: Thus, AEEJ showed antihistaminic, mast cell stabilizing and protective in guinea pigs against histamine induced PCD, reduced eosinophilia and leukocytosis and hence possesses potential role in the treatment of asthma.


Development ◽  
1995 ◽  
Vol 121 (1) ◽  
pp. 163-172 ◽  
Author(s):  
L. Pevny ◽  
C.S. Lin ◽  
V. D'Agati ◽  
M.C. Simon ◽  
S.H. Orkin ◽  
...  

GATA-1 is a zinc-finger transcription factor believed to play an important role in gene regulation during the development of erythroid cells, megakaryocytes and mast cells. Other members of the GATA family, which can bind to the same DNA sequence motif, are co-expressed in several of these hemopoietic lineages, raising the possibility of overlap in function. To examine the specific roles of GATA-1 in hematopoietic cell differentiation, we have tested the ability of embryonic stem cells, carrying a targeted mutation in the X-linked GATA-1 gene, to contribute to various blood cell types when used to produce chimeric embryos or mice. Previously, we reported that GATA-1- mutant cells failed to contribute to the mature red blood cell population, indicating a requirement for this factor at some point in the erythroid lineage (L. Pevny et al., (1991) Nature 349, 257–260). In this study, we have used in vitro colony assays to identify the stage at which mutant erythroid cells are affected, and to examine the requirement for GATA-1 in other lineages. We found that the development of erythroid progenitors in embryonic yolk sacs was unaffected by the mutation, but that the cells failed to mature beyond the proerythroblast stage, an early point in terminal differentiation. GATA-1- colonies contained phenotypically normal macrophages, neutrophils and megakaryocytes, indicating that GATA-1 is not required for the in vitro differentiation of cells in these lineages. GATA-1- megakaryocytes were abnormally abundant in chimeric fetal livers, suggesting an alteration in the kinetics of their formation or turnover. The lack of a block in terminal megakaryocyte differentiation was shown by the in vivo production of platelets expressing the ES cell-derived GPI-1C isozyme. The role of GATA-1 in mast cell differentiation was examined by the isolation of clonal mast cell cultures from chimeric fetal livers. Mutant and wild-type mast cells displayed similar growth and histochemical staining properties after culture under conditions that promote the differentiation of cells resembling mucosal or serosal mast cells. Thus, the mast and megakaryocyte lineages, in which GATA-1 and GATA-2 are co-expressed, can complete their maturation in the absence of GATA-1, while erythroid cells, in which GATA-1 is the predominant GATA factor, are blocked at a relatively early stage of maturation.


Blood ◽  
1988 ◽  
Vol 72 (3) ◽  
pp. 877-885 ◽  
Author(s):  
Y Kanakura ◽  
H Thompson ◽  
T Nakano ◽  
T Yamamura ◽  
H Asai ◽  
...  

Mouse peritoneal mast cells (PMC) express a connective tissue-type mast cell (CTMC) phenotype, including reactivity with the heparin-binding fluorescent dye berberine sulfate and incorporation of [35S] sulfate predominantly into heparin proteoglycans. When PMC purified to greater than 99% purity were cultured in methylcellulose with IL-3 and IL-4, approximately 25% of the PMC formed colonies, all of which contained both berberine sulfate-positive and berberine sulfate-negative mast cells. When these mast cells were transferred to suspension culture, they generated populations that were 100% berberine sulfate-negative, a characteristic similar to that of mucosal mast cells (MMC), and that synthesized predominantly chondroitin sulfate [35S] proteoglycans. When “MMC-like” cultured mast cells derived from WBB6F1-+/+ PMC were injected into the peritoneal cavities of mast cell-deficient WBB6F1- W/Wv mice, the adoptively transferred mast cell population became 100% berberine sulfate-positive. In methylcellulose culture, these “second generation PMC” formed clonal colonies containing both berberine sulfate-positive and berberine sulfate-negative cells, but exhibited significantly less proliferative ability than did normal +/+ PMC. Thus, clonal mast cell populations initially derived from single PMC exhibited multiple and bidirectional alterations between CTMC-like and MMC-like phenotypes. However, this process was associated with a progressive diminution of the mast cells' proliferative ability.


2013 ◽  
Vol 304 (5) ◽  
pp. G479-G489 ◽  
Author(s):  
Katherine R. Groschwitz ◽  
David Wu ◽  
Heather Osterfeld ◽  
Richard Ahrens ◽  
Simon P. Hogan

Mast cells regulate intestinal barrier function during disease and homeostasis. Secretion of the mast cell-specific serine protease chymase regulates homeostasis. In the present study, we employ in vitro model systems to delineate the molecular pathways involved in chymase-mediated intestinal epithelial barrier dysfunction. Chymase stimulation of intestinal epithelial (Caco-2 BBe) cell monolayers induced a significant reduction in transepithelial resistance, indicating decreased intestinal epithelial barrier function. The chymase-induced intestinal epithelial barrier dysfunction was characterized by chymase-induced protease-activated receptor (PAR)-2 activation and matrix metalloproteinase (MMP)-2 expression and activation. Consistent with this observation, in vitro analysis revealed chymase-induced PAR-2 activation and increased MAPK activity and MMP-2 expression. Pharmacological and small interfering RNA-mediated antagonism of PAR-2 and MMP-2 significantly attenuated chymase-stimulated barrier dysfunction. Additionally, the chymase/MMP-2-mediated intestinal epithelial dysfunction was associated with a significant reduction in the tight junction protein claudin-5, which was partially restored by MMP-2 inhibition. Finally, incubation of Caco-2 BBe cells with chymase-sufficient, but not chymase-deficient, bone marrow-derived mast cells decreased barrier function, which was attenuated by the chymase inhibitor chymostatin. Collectively, these results suggest that mast cell/chymase-mediated intestinal epithelial barrier function is mediated by PAR-2/MMP-2-dependent pathways.


2007 ◽  
Vol 292 (5) ◽  
pp. E1410-E1417 ◽  
Author(s):  
Marie-Pierre Belot ◽  
Latifa Abdennebi-Najar ◽  
Françoise Gaudin ◽  
Michèle Lieberherr ◽  
Véronique Godot ◽  
...  

Mast cell recruitment is implicated in many physiological functions and several diseases. It depends on microenvironmental factors, including hormones. We have investigated the effect of progesterone on the migration of HMC-1560 mast cells toward CXCL12, a chemokine that controls the migration of mast cells into tissues. HMC-1560 mast cells were incubated with 1 nM to 1 μM progesterone for 24 h. Controls were run without progesterone. Cell migration toward CXCL12 was monitored with an in vitro assay, and statistical analysis of repeated experiments revealed that progesterone significantly reduced cell migration without increasing the number of apoptotic cells ( P = 0.0084, n = 7). Differences between progesterone-treated and untreated cells were significant at 1 μM ( P < 0.01, n = 7). Cells incubated with 1 μM progesterone showed no rearrangment of actin filaments in response to CXCL12. Progesterone also reduced the calcium response to CXCL12 and Akt phosphorylation. Cells incubated with progesterone had one-half the control concentrations of CXCR4 (mRNA, total protein, and membrane-bound protein). Progesterone also inhibited the migration of HMC-1560 cells transfected with hPR-B-pSG5 plasmid, which contained 2.5 times as much PR-B as the control. These transfected cells responded differently ( P < 0.05, n = 5) from untreated cells to 1 nM progesterone. We conclude that progesterone reduces mast cell migration toward CXCL12 and that CXCR4 may be a progesterone target in mast cells.


Sign in / Sign up

Export Citation Format

Share Document