scholarly journals Metabolic profiling reveals nutrient preferences during carbon utilization in Bacillus species

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James D. Chang ◽  
Ellen E. Vaughan ◽  
Carmen Gu Liu ◽  
Joseph W. Jelinski ◽  
Austen L. Terwilliger ◽  
...  

AbstractThe genus Bacillus includes species with diverse natural histories, including free-living nonpathogenic heterotrophs such as B. subtilis and host-dependent pathogens such as B. anthracis (the etiological agent of the disease anthrax) and B. cereus, a cause of food poisoning. Although highly similar genotypically, the ecological niches of these three species are mutually exclusive, which raises the untested hypothesis that their metabolism has speciated along a nutritional tract. Here, we developed a pipeline for quantitative total assessment of the use of diverse sources of carbon for general metabolism to better appreciate the “culinary preferences” of three distinct Bacillus species, as well as related Staphylococcus aureus. We show that each species has widely varying metabolic ability to utilize diverse sources of carbon that correlated to their ecological niches. This approach was applied to the growth and survival of B. anthracis in a blood-like environment and find metabolism shifts from sugar to amino acids as the preferred source of energy. Finally, various nutrients in broth and host-like environments are identified that may promote or interfere with bacterial metabolism during infection.

2020 ◽  
Author(s):  
James D. Chang ◽  
Ellen E. Vaughan ◽  
Carmen Gu Liu ◽  
Joseph W. Jelinski ◽  
Austen L. Terwilliger ◽  
...  

AbstractPathogenic bacteria take host nutrients to support their growth, division, survival, and pathogenesis. The genus Bacillus includes species with diverse natural histories, including free-living nonpathogenic heterotrophs such as B. subtilis and host-dependent pathogens such as B. anthracis (the etiological agent of the disease anthrax) and B. cereus, a cause of food poisoning. Although highly similar genotypically, the ecological niches of these three species are mutually exclusive, which raises the untested hypothesis that their metabolism has speciated along a nutritional tract. Here, we employed a quantitative measurement of the number of reducing equivalents as a function of growth on hundreds of different sources of carbon to gauge the “culinary preferences” of three distinct Bacillus species, and related Staphylococcus aureus. We show that each species had widely varying metabolic ability to utilize diverse sources of carbon that correlated to their ecological niches. In addition, carbohydrates are shown to be the preferred sources of carbon when grown under ideal in vitro conditions. Rather unexpectedly, these metabolic utilizations did not correspond one-to-one with an increase in biomass, which brings to question what cellular activity should be considered productive when it comes to virulence. Finally, we applied this system to the growth and survival of B. anthracis in a blood-based environment and find that amino acids become the preferred source of energy while demonstrating the possibility of applying this approach to identifying xenobiotics or host compounds that can promote or interfere with bacterial metabolism during infection.Author summarySuccessful organisms must make nutritional adaptations to thrive in their environment. Bacterial pathogens are no exception, having evolved for survival inside their hosts. The host combats these pathogens by depriving them of potential biochemical resources, termed nutritional immunity. This places pathogens under pressure to utilize their resources efficiently and strategically, and their metabolism must in turn be tailored for this situation. In this study, we examined the carbon metabolism of three human pathogens of varying virulence (Bacillus anthracis, Bacillus cereus, and Staphylococcus aureus) and one nonpathogenic Bacillus (Bacillus subtilis) via a phenotype microarray that senses reducing equivalents produced during metabolism. Our analysis shows the existence of distinct preferences by these pathogens towards only a select few carbohydrates and implies reliance on specific metabolic pathways. These metabolic signatures obtained could be distinguished from one bacterial species to another, and we conclude that nutrient preferences offer a new perspective into investigating how pathogens can thrive during infection despite host-induced starvation.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 311
Author(s):  
Chen Chen ◽  
Weili Hong

Due to the inappropriate use and overuse of antibiotics, the emergence and spread of antibiotic-resistant bacteria are increasing and have become a major threat to human health. A key factor in the treatment of bacterial infections and slowing down the emergence of antibiotic resistance is to perform antimicrobial susceptibility testing (AST) of infecting bacteria rapidly to prescribe appropriate drugs and reduce the use of broad-spectrum antibiotics. Current phenotypic AST methods based on the detection of bacterial growth are generally reliable but are too slow. There is an urgent need for new methods that can perform AST rapidly. Bacterial metabolism is a fast process, as bacterial cells double about every 20 to 30 min for fast-growing species. Moreover, bacterial metabolism has shown to be related to drug resistance, so a comparison of differences in microbial metabolic processes in the presence or absence of antimicrobials provides an alternative approach to traditional culture for faster AST. In this review, we summarize recent developments in rapid AST methods through metabolic profiling of bacteria under antibiotic treatment.


Parasitology ◽  
2014 ◽  
Vol 141 (9) ◽  
pp. 1203-1215 ◽  
Author(s):  
VICTORIA GILLAN ◽  
EILEEN DEVANEY

SUMMARYNematodes are amongst the most successful and abundant organisms on the planet with approximately 30 000 species described, although the actual number of species is estimated to be one million or more. Despite sharing a relatively simple and invariant body plan, there is considerable diversity within the phylum. Nematodes have evolved to colonize most ecological niches, and can be free-living or can parasitize plants or animals to the detriment of the host organism. In this review we consider the role of heat shock protein 90 (Hsp90) in the nematode life cycle. We describe studies on Hsp90 in the free-living nematode Caenorhabditis elegans and comparative work on the parasitic species Brugia pahangi, and consider whether a dependence upon Hsp90 can be exploited for the control of parasitic species.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Huan Zhang ◽  
Juan Xing ◽  
Zhujiang Dai ◽  
Daorong Wang ◽  
Dong Tang

AbstractPancreatic cancer is one of the most common malignancies. Unfortunately, the lack of effective methods of treatment and diagnosis has led to poor prognosis coupled with a very high mortality rate. So far, the pathogenesis and progression mechanisms of pancreatic cancer have been poorly characterized. Exosomes are small vesicles secreted by most cells, contain lipids, proteins, and nucleic acids, and are involved in diverse functions such as intercellular communications, biological processes, and cell signaling. In pancreatic cancer, exosomes are enriched with multiple signaling molecules that mediate intercellular communication with control of immune suppression, mutual promotion between pancreas stellate cells and pancreatic cancer cells, and reprogramming of normal cells. In addition, exosomes can regulate the pancreatic cancer microenvironment and promote the growth and survival of pancreatic cancer. Exosomes can also build pre-metastatic micro-ecological niches and facilitate the targeting of pancreatic cancer. The ability of exosomes to load cargo and target allows them to be of great clinical value as a biomarker mediator for targeted drugs in pancreatic cancer.


1981 ◽  
Vol 44 (6) ◽  
pp. 430-434 ◽  
Author(s):  
JAMES E. STEELE ◽  
MICHAEL E. STILES

Ham sandwiches inoculated with a mixture of five enteropathogenic bacteria, Bacillus cereus, Clostridium perfringens. Escherichia coli, Salmonella typhimurium and Staphylococcus aureus, were held at 30, 21 and 4 C for up to 24 h. Food poisoning potential was judged by the growth and survival of the inoculated pathogens. Major differences were observed between new and old (30 days of storage at 4 C) ham samples. On new ham, all enteropathogens were able to grow except C. perfringens, whereas on old ham, with high microbial competition. the pathogens survived but did not grow. Severe storage temperature abuse was necessary to develop a food poisoning potential in new ham samples. The safety of old ham was attributed to the competitive microflora that grew in the ham during storage at 4 C for 30 days. Infective pathogens, E. coli and S. typhimurium, either survived or increased in numbers under all test conditions. The safety of vacuum packaged sliced ham for use in sandwiches, in its present market form, was indicated by these studies.


2013 ◽  
Vol 79 (20) ◽  
pp. 6407-6413 ◽  
Author(s):  
E. Lambrecht ◽  
J. Baré ◽  
I. Van Damme ◽  
W. Bert ◽  
K. Sabbe ◽  
...  

ABSTRACTFree-living protozoa play an important role in the ecology and epidemiology of human-pathogenic bacteria. In the present study, the interaction betweenYersinia enterocolitica, an important food-borne pathogen, and the free-living amoebaAcanthamoeba castellaniiwas studied. Several cocultivation assays were set up to assess the resistance ofY. enterocoliticatoA. castellaniipredation and the impact of environmental factors and bacterial strain-specific characteristics. Results showed that allY. enterocoliticastrains persist in association withA. castellaniifor at least 14 days, and associations withA. castellaniienhanced survival ofYersiniaunder nutrient-rich conditions at 25°C and under nutrient-poor conditions at 37°C. Amoebae cultivated in the supernatant of oneYersiniastrain showed temperature- and time-dependent permeabilization. Intraprotozoan survival ofY. enterocoliticadepended on nutrient availability and temperature, with up to 2.8 log CFU/ml bacteria displaying intracellular survival at 7°C for at least 4 days in nutrient-rich medium. Transmission electron microscopy was performed to locate theYersiniacells inside the amoebae. AsYersiniaandAcanthamoebashare similar ecological niches, this interaction identifies a role of free-living protozoa in the ecology and epidemiology ofY. enterocolitica.


1983 ◽  
Vol 91 (3) ◽  
pp. 467-478 ◽  
Author(s):  
J. M. Mansfield ◽  
G. Farkas ◽  
Antonnette A. Wieneke ◽  
R. J. Gilbert

SUMMARYThe growth of an enterotoxin A producing strain ofStaphylococcus aureusin corned beef was investigated. In the inoculated 6 lb. canned product the bacteria spread throughout the meat and attained high numbers. The rate of spread of the organisms was related to the temperature and length of storage of the cans and the numbers of bacteria inoculated. Cans which had been stored for more than four months showed high counts of the bacteria throughout the meat. It was noted that with the long term contaminated product counts ofS. aureuson some selective media may give falsely low results.Numbers ofS. aureuson meat inoculated by handling after removal from the can were initially extremely variable. More uniform distribution and higher counts were attained only if the meat was exposed for some hours at ambient temperature or above. The significance of the results to the investigation of outbreaks of food poisoning suspected of being associated with canned corned beef is discussed.


2017 ◽  
Vol 13 ◽  
pp. 117693431770086 ◽  
Author(s):  
Kateřina Snopková ◽  
Karel Sedlář ◽  
Juraj Bosák ◽  
Eva Chaloupková ◽  
Ivo Sedláček ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document