scholarly journals Inversion in the permeability evolution of deforming Westerly granite near the brittle–ductile transition

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Claudio Petrini ◽  
Claudio Madonna ◽  
Taras Gerya

AbstractFluid flow through crustal rocks is controlled by permeability. Underground fluid flow is crucial in many geotechnical endeavors, such as CO2 sequestration, geothermal energy, and oil and gas recovery. Pervasive fluid flow and pore fluid pressure control the strength of a rock and affect seismicity in tectonic and geotechnical settings. Despite its relevance, the evolution of permeability with changing temperature and during deformation remains elusive. In this study, the permeability of Westerly granite at an effective pressure of 100 MPa was measured under conditions near its brittle–ductile transition, between 650 °C and 850 °C, with a strain rate on the order of 2·10–6 s−1. To capture the evolution of permeability with increasing axial strain, the samples were continuously deformed in a Paterson gas-medium triaxial apparatus. The microstructures of the rock were studied after testing. The experiments reveal an inversion in the permeability evolution: an initial decrease in permeability due to compaction and then an increase in permeability shortly before and immediately after failure. The increase in permeability after failure, also present at high temperatures, is attributed to the creation of interconnected fluid pathways along the induced fractures. This systematic increase demonstrates the subordinate role that temperature dilatancy plays in permeability control compared to stress and its related deformation. These new experimental results thus demonstrate that permeability enhancement under brittle–ductile conditions unveils the potential for EGS exploitation in high-temperature rocks.

2020 ◽  
Vol 223 (3) ◽  
pp. 1481-1496
Author(s):  
Elif Cihan Yildirim ◽  
Kyungjae Im ◽  
Derek Elsworth

SUMMARY Mechanisms controlling fracture permeability enhancement during injection-induced and natural dynamic stressing remain unresolved. We explore pressure-driven permeability (k) evolution by step-increasing fluid pressure (p) on near-critically stressed laboratory fractures in shale and schist as representative of faults in sedimentary reservoirs/seals and basement rocks. Fluid is pulsed through the fracture with successively incremented pressure to first examine sub-reactivation permeability response that then progresses through fracture reactivation. Transient pore pressure pulses result in a permeability increase that persists even after the return of spiked pore pressure to the null background level. We show that fracture sealing is systematically reversible with the perturbing pressure pulses and pressure-driven permeability enhancement is eminently reproducible even absent shear slip and in the very short term (order of minutes). These characteristics of the observed fracture sealing following a pressure perturbation appear similar to those of the response by rate-and-state frictional healing upon stress/velocity perturbations. Dynamic permeability increase scales with the pore pressure magnitude and fracture sealing controls the following per-pulse permeability increase, both in the absence and presence of reactivation. However, initiation of the injection-induced reactivation results in a significant increase in the rate of permeability enhancement (dk/dp). These results demonstrate the role of frictional healing and sealing of fractures at interplay with other probable processes in pore pressure-driven permeability stimulation, such as particle mobilization.


Author(s):  
Arihant Sonawat ◽  
Abdus Samad ◽  
Afshin Goharzadeh

Flaring and venting contributes significantly to greenhouse gas emissions and environmental pollution in the upstream oil and gas industry. Present work focuses on a horizontal flow, multiphase ejector used for recovery of these flared gases. The ejector typically handles these gases being entrained by high pressure well head fluid and a comprehensive understanding is necessary to design and operate such recovery system. A CFD based analysis of the flow through the ejector has been reported in this paper. The flow domain was meshed and the mass and momentum equations for fluid flow were solved using commercial software CFX (v14.5). Euler-Euler multiphase approach was used to model different phases. The entrainment behavior of the ejector was investigated and compared for different fluid flow conditions. It was observed that for a fixed primary fluid flow rate, the entrained or secondary flow rate decreased linearly with an increase in pressure difference between exit and suction pressure. The higher was primary flow rate, the greater was the suction created ahead of the primary nozzle and greater was the amount of energy added to the entrained fluid.


SPE Journal ◽  
2016 ◽  
Vol 21 (01) ◽  
pp. 256-263 ◽  
Author(s):  
Aditya Khanna ◽  
Andrei Kotousov

Summary Fracture-height containment is desirable in hydraulic-fracturing treatments because it can result in better efficiency of oil or gas recovery and have less impact on the environment. Several mechanisms of the containment of a single hydraulic fracture were investigated in the past, and the outcomes of these studies are now well-documented in the open literature. However, the effectiveness of these mechanisms in the case of multiple closely spaced hydraulic fractures has not received much attention. The latter situation typically arises in the case of multiple transverse fractures emanating from a single horizontal wellbore. In this paper, we develop a mathematical model that one can use to assess the fracture-interaction phenomenon as well as the effect of the modulus contrast between adjacent rock layers. We consider the situation in which one must contain the hydraulic fractures entirely in the pay zone and investigate fracturing-fluid-pressure control as a possible mechanism of height containment. It is demonstrated that when the fracture spacing becomes comparable with the fracture height, the interaction between the fractures produces a shielding effect. In this case, the fracturing-fluid pressure that ensures fracture containment is greater in comparison with the case of a single isolated fracture. However, the fracture opening is also smaller in the case of closely spaced fractures. The dependence of the fracturing-fluid pressure and fracture opening on the fracture spacing needs to be taken into consideration during the selection of fracture spacing for a particular treatment.


2013 ◽  
Vol 459 ◽  
pp. 693-697 ◽  
Author(s):  
Chong Feng ◽  
Hua Cai

Buried mudstones general have undercompacted phenomenon. Undercompacted mudstones have the characteristics that the porosity and pore fluid pressure are abnormal bigger. In order to disclosure the seepage mechanics mechanism of undercompacted mudstones formation, this paper has summed up the seepage mechanics relationship when fluid flows through the mudstone, and has verified the relationships between the key physical quantities with the minimal pressure (pressure that can let the fluid flow in the mudstone) by the experiments in physics. This paper has also analysis the formations process of undercompacted mudstone. The result shows that, the flow regime of fluid in the mudstone is the low speed seepage, and it is not applicable by Darcy equation; the fluid what flow through the thick and heavy compacted mudstone has the big minimal pressure. At the beginning or during the deposit, the rule of fluid flow in the mudstone decides that the fluid inside of the mudstone is more difficult to flow out than the fluid surface of the mudstone, and the inside mudstone becomes undercompacted. Because of the undercompacted mudstone is more important for the exploration of oil and gas, it has theoretic and practical sense to analysis the formations mechanism of the undercompacted mudstone.


2020 ◽  
Author(s):  
Barbara Marchesini ◽  
Giulio Viola ◽  
Luca Menegon ◽  
Jussi Mattila ◽  
Gunnar Schwarz ◽  
...  

<p>Fluids play a key role in weakening rocks, controlling crustal deformation from early fracture development to mature strain localization, fault nucleation and propagation through cumulative slip. In particular, at the brittle-ductile transition zone crustal deformation and fluid flow are mutually interconnected by repeating cycles of transient frictional and viscous deformation. Uncertainties remain, however, on the details of the micromechanical and chemical influence of fluids in facilitating strain localization processes.</p><p>N-S to NW-SE sub-vertical brittle-ductile faults cut across the Paleoproterozoic migmatitic basement of southwestern Finland on the island of Olkiluoto, where the Finnish authorities plan the construction of a deep repository for high-grade nuclear waste. The faults are characterized by a brittle–ductile to fully brittle deformation style resulting from transient fluid pressurization. We investigated a representative fault by combining field and microstructural observations with fluid inclusion and mineral chemistry analysis on synkinematic and authigenic minerals in order to reconstruct the temporal variations of pressure, temperature, composition and salinity of the synkinematic fluids that controlled strain localization. Combined laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOFMS) and electron back-scattered diffraction analysis (EBSD) were also applied on authigenic sulphides to gain insights into their role upon strain accommodation and deformation-induced elemental transport and distribution at the microscopic scale.</p><p>Initial embrittlement of the Olkiluoto basement occurred under a first event of fluid overpressure conditions (> 210 MPa) with formation of a diffuse network of joints and/or hybrid–shear fractures in a volume that corresponds to the fault damage zone. Subsequent deformation was caused by repeated hydrofracturing induced by fluid pressure up to 210 MPa. Brittle ruptures affected a system that was otherwise under overall ductile conditions, as demonstrated by mutually overprinting veining, cataclasis and plastic deformation.</p><p>Later exhumation and cooling of the fault system to fully brittle conditions was aided by reactivation triggered by a distinct fluid ingress at lower pressure (140-180 MPa) and temperature (≤ 300° C). Deformation was accommodated at that stage by the interplay of brittle fracturing and low-temperature crystal-plastic in sulphides. Strain and fluid flow created high diffusivity pathways within the pyrite crystal lattices contributing to- and enhancing the net transport of a significant range of heavy elements (e.g. Co, Ni, Cu, Sn, Ag, As, Sb, Pb). These data indicate that the studied fault zone acted as a chemically open system and fault valve.</p>


2020 ◽  
Vol 42 (4) ◽  
pp. 33-49
Author(s):  
O.V. CHEPIZHKO ◽  
V.V. YANKO ◽  
V.M. KADURIN ◽  
I.M. NAUMKO ◽  
S.M. SHATALIN

For the first time the importance of mineralogical and lithological-petrographical ranks in the line of geological information ranks is substantiated for implementation of long-term forecasts, standard and non-standard approaches to research of physical and geochemical parameters as a basis of creation of complex system of forecast criteria and prospecting indicators of hydrocarbons within the sedimentary cover of Black sea based on the theory of global fluid-flows derivation. These criteria have different sensitivity to the object (hydrocarbon deposits) and are therefore ranked. The ranking determined the following parameters: 1) seismic data within the object, obtained by the method of deep seismic sounding, RWM SDP; 2) parameters of tectono-geodynamic structures; 3) the main characteristics of sedimentary cover and bedrock; 4) geochemical characteristics; 5) parameters of mineral complexes and fluid inclusions in mineral neoformations; 6) the value of the distribution of meiobenthos. Based on modern views of oil and gas geology, structural-tectonic and lithological-facies criteria are among the main ones. The study of the mineralogical component of sediments is made with using mineralogical, thermobarogeochemical and X-ray spectral methods. Fixation of anomalies of fluid flow at the bottom of the Black Sea as to the distribution of abiotic parameters in order to assess the prospects of oil and gas is determined by structural and tectonic features and high permeability of fluid flow; parameters of mineral complexes (minerals, facies) and genetic connections; heterogeneity of geochemical characteristics of bottom sediments; the presence of hydrocarbon inclusions in authigenic minerals of bottom sediments.


2017 ◽  
pp. 62-67
Author(s):  
V. G. Kuznetsov ◽  
O. A. Makarov

At cementing of casing of oil and gas wells during the process of injecting of cement slurry in the casing column the slurry can move with a higher speed than it’s linear injection speed. A break of continuity of fluid flow occurs, what can lead to poor quality isolation of producing formations and shorten the effective life of the well. We need to find some technical solution to stabilize the linear velocity of the cement slurry in the column. This task can be resolved with an automated control system.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 103
Author(s):  
Miguel Ladero

Energy policies in the US and in the EU during the last decades have been focused on enhanced oil and gas recovery, including the so-called tertiary extraction or enhanced oil recovery (EOR), on one hand, and the development and implementation of renewable energy vectors, on the other, including biofuels as bioethanol (mainly in US and Brazil) and biodiesel (mainly in the EU) [...]


Clay Minerals ◽  
2011 ◽  
Vol 46 (1) ◽  
pp. 1-24 ◽  
Author(s):  
P. H. Nadeau

AbstractThe impact of diagenetic processes on petroleum entrapment and recovery efficiency has focused the vast majority of the world's conventional oil and gas resources into relatively narrow thermal intervals, which we call Earth's energy “Golden Zone”. Two key mineralogical research breakthroughs, mainly from the North Sea, underpinned this discovery. The first is the fundamental particle theory of clay mineralogy, which showed the importance of dissolution/precipitation mechanisms in the formation of diagenetic illitic clays with increasing depth and temperature. The second is the surface area precipitation-rate-controlled models for the formation of diagenetic cements, primarily quartz, in reservoirs. Understanding the impacts of these geological processes on permeability evolution, porosity loss, overpressure development, and fluid migration in the subsurface, lead to the realization that exploration and production risks are exponential functions of reservoir temperature. Global compilations of oil/gas reserves relative to reservoir temperature, including the US Gulf Coast, have verified the “Golden Zone” concept, as well as stimulated further research to determine in greater detail the geological/mineralogical controls on petroleum migration and entrapment efficiency within the Earth's sedimentary basins.


Sign in / Sign up

Export Citation Format

Share Document