scholarly journals In situ lymphoma imaging in a spontaneous mouse model using the Cerenkov Luminescence of F-18 and Ga-67 isotopes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zsombor Ritter ◽  
Katalin Zámbó ◽  
Péter Balogh ◽  
Dávid Szöllősi ◽  
Xinkai Jia ◽  
...  

AbstractCerenkov luminescence imaging (CLI) is a promising approach to image-guided surgery and pathological sampling. It could offer additional advantages when combined to whole-body isotope tomographies. We aimed to obtain evidence of its applicability in lymphoma patho-diagnostics, thus we decided to investigate the radiodiagnostic potential of combined PET or SPECT/CLI in an experimental, novel spontaneous high-grade B-cell lymphoma mouse model (Bc.DLFL1). We monitored the lymphoma dissemination at early stage, and at clinically relevant stages such as advanced stage and terminal stage with in vivo 2-deoxy-2-[18F]fluoro-d-glucose (FDG) positron emission tomography (PET)/magnetic resonance imaging (MRI) and 67Ga-citrate single photon emission computed tomography (SPECT)/MRI. In vivo imaging was combined with ex vivo high resolution CLI. The use of CLI with 18F-Fluorine (F-18) and 67Ga-Gallium isotopes in the selection of infiltrated lymph nodes for tumor staging and pathology was thus tested. At advanced stage, FDG PET/MRI plus ex vivo CLI allowed accurate detection of FDG accumulation in lymphoma-infiltrated tissues. At terminal stage we detected tumorous lymph nodes with SPECT/MRI and we could report in vivo detection of the Cerenkov light emission of 67Ga. CLI with 67Ga-citrate revealed lymphoma accumulation in distant lymph node locations, unnoticeable with only MRI. Flow cytometry and immunohistochemistry confirmed these imaging results. Our study promotes the combined use of PET and CLI in preclinical studies and clinical practice. Heterogeneous FDG distribution in lymph nodes, detected at sampling surgery, has implications for tissue pathology processing and it could direct therapy. The results with 67Ga also point to the opportunities to further apply suitable SPECT radiopharmaceuticals for CLI.

2021 ◽  
Author(s):  
Zsombor Ritter ◽  
Katalin Zámbó ◽  
Péter Balogh ◽  
Dávid Szöllősi ◽  
Xinkai Jia ◽  
...  

Abstract We aimed to study lymphoma diagnostics by Cerenkov luminescence imaging (CLI). We monitored the dissemination of a spontaneous high-grade mouse lymphoma (Bc.DLFL1) in early stage; advanced stage; and terminal stage with in vivo 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) / magnetic resonance imaging (MRI) and 67Ga-citrate single photon emission computed tomography (SPECT) / MRI. In vivo imaging was combined with ex vivo high resolution CLI. The use of CLI with Fluorine-18 and Gallium-67 to select infiltrated lymph nodes for tumor staging pathology was thus tested. At advanced stage, [18F]FDG PET/MRI plus ex vivo CLI allowed accurate detection of [18F]FDG accumulation in lymphoma-infiltrated tissues. At terminal stage we detected tumorous lymph nodes with SPECT/MRI and we could report the Cerenkov light emission of 67Ga. CLI with 67Ga-citrate revealed lymphoma accumulation in distant lymph node locations, unnoticeable with only MRI. Flow cytometry and immunohistochemistry confirmed these imaging results. Our study promotes the combined use of PET and CLI in preclinical studies and clinical practice. Heterogeneous [18F]FDG distribution in lymph nodes detected at sampling surgery has implications for tissue pathology processing and could direct therapy. The results with 67Ga also point to the opportunities to further apply suitable SPECT radiopharmaceuticals for CLI.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3835-3835 ◽  
Author(s):  
Michael Fitzgerald ◽  
Yueying Cao ◽  
Bret Bannerman ◽  
Zhi Li ◽  
Olga Tayber ◽  
...  

Abstract Abstract 3835 Poster Board III-771 Introduction The first generation proteasome inhibitor VELCADE® (bortezomib) is indicated for the treatment of patients with multiple myeloma (MM), a form of plasma cell malignancy (PCM). MLN9708 is our novel proteasome inhibitor that selectively and reversibly binds to, and potently inhibits the b5 site of the 20s proteasome in preclinical studies. We have recently demonstrated that MLN9708 significantly prolongs tumor-free survival of double transgenic iMycCa/Bcl-XL mice, a genetically-engineered mouse model of de novo PCM. Here we describe the in vivo evaluation of cell lines derived from double transgenic iMycCa/Bcl-XL mice and the antitumor activity of MLN9708 in a disseminated mouse model of iMycCa/Bcl-XL PCM. Materials MLN9708 immediately hydrolyzes to MLN2238, the biologically active form, upon exposure to aqueous solutions or plasma. MLN2238 was used for all preclinical studies described below. Double transgenic iMycCa/Bcl-XL mice develop de novo PCM, in which neoplastic plasma cell development is driven by the targeted expression of the oncoprotein Myc and anti-apoptotic Bcl-XL (J. Clin. Invest. 113:1763-1773, 2004). DP54 and DP42 are plasma cell tumor cell lines isolated from the bone marrow and lymph nodes, respectively, of syngeneic mice previously inoculated with iMycCa/Bcl-XL tumors (Cancer Res. 67:4069-4078, 2007). In vitro, DP54 and DP42 cells express both the Myc and Bcl-XL transgenes, various plasma cell and B-cell markers including CD38, CD138 and B220, and have gene expression profiles very similar to human MM. Methods Cell viability studies were performed to determine the antiproliferative effects of MLN2238 in DP54 and DP42 cells in vitro. To evaluate DP54 and DP42 cells in vivo, these cells were aseptically inoculated into the tail vein of NOD-SCID mice. Progressions of the resultant PCM were monitored and tumor burdens were evaluated by magnetic resonance imaging (MRI), ex vivo mCT imaging, and histopathology. Mouse plasma samples were collected at the end of the studies and levels of immunoglobulin were assessed. To establish a preclinical disseminated mouse model of iMycCa/Bcl-XL PCM, freshly dissociated DP54-Luc cells (constitutively expressing firefly luciferase under a mouse Ig-k promoter) were aseptically inoculated into the tail vein of NOD-SCID mice. Once tumor growth has been established, mice were randomized into treatment groups and then treated with vehicle, bortezomib (at 0.7mg/kg intravenously [IV] twice weekly [BIW]) or MLN2238 (at 11 mg/kg IV BIW) for 3 consecutive weeks. Tumor burden was measured by bioluminescent imaging. Results In vitro, both DP54 and DP42 cells were sensitive to MLN2238 treatment (LD50 values of 14 and 25 nM, respectively). In vivo, NOD-SCID mice rapidly succumbed to PCM after being inoculated with DP54 and DP42 cells (25 and 14 days post-inoculation, respectively), where the disease was accompanied by marked elevation of plasma immunoglobulins. MRI scans revealed the presence of multiple lesions and several abnormalities were found including: cranial deformation, bowel distortion, splenomegaly and renal edema. Tumor infiltrates, ranging from minor to extensive, were identified in multiple organ compartments (brain<kidney<liver<lymph nodes<spleen<bone marrow) by histopathological analysis. Ex vivo mCT imaging has also revealed signs of bone erosion in the cranial sagittal sutures. Dissemination of DP54-Luc cells after tail vein inoculations was detected by in vivo bioluminescent and confirmed by ex vivo imaging where luminescent tumor nodules were identified in the spleen, kidneys, liver, intestine, lymph nodes, spinal bone and cranium. To assess the antitumor activity of MLN2238, an efficacy study was performed using the DP54-Luc disseminated model. Tumor burden (bioluminescence), skeletal malformation (mCT) and overall survival after treatment with bortezomib and MLN2238 will be presented. Conclusion The DP54-Luc disseminated mouse model of double transgenic iMycCa/Bcl-XL PCM recapitulated several key features of human MM and provided real-time assessment of novel MM therapy preclinically. MLN9708 is currently in human clinical development for both hematological and solid tumor indications. Disclosures: Cao: Milllennium: Employment, Equity Ownership. Bannerman:Milllennium: Employment. Li:Milllennium: Employment. Bradley:Milllennium: Employment, Equity Ownership, Research Funding. Silverman:Milllennium: Employment. Janz:Milllennium: Research Funding. Van Ness:Milllennium: Research Funding. Kupperman:Milllennium: Employment. Manfredi:Milllennium: Employment. Lee:Milllennium: Employment, Equity Ownership.


2021 ◽  
Vol 22 (9) ◽  
pp. 4431
Author(s):  
Zsombor Ritter ◽  
Katalin Zámbó ◽  
Xinkai Jia ◽  
Dávid Szöllősi ◽  
Dániel Dezső ◽  
...  

Bc-DLFL.1 is a novel spontaneous, high-grade transplantable mouse B-cell lymphoma model for selective serosal propagation. These cells attach to the omentum and mesentery and show dissemination in mesenteric lymph nodes. We aimed to investigate its early stage spread at one day post-intraperitoneal inoculation of lymphoma cells (n = 18 mice), and its advanced stage at seven days post-inoculation with in vivo [18F]FDG-PET and [18F]PET/MRI, and ex vivo by autoradiography and Cherenkov luminescence imaging (CLI). Of the early stage group, nine animals received intraperitoneal injections, and nine received intravenous [18F]FDG injections. The advanced stage group (n = 3) received intravenous FDG injections. In the early stage, using autoradiography we observed a marked accumulation in the mesentery after intraperitoneal FDG injection. Using other imaging methods and autoradiography, following the intravenous injection of FDG no accumulations were detected. At the advanced stage, tracer accumulation was clearly detected in mesenteric lymph nodes and in the peritoneum after intravenous administration using PET. We confirmed the results with immunohistochemistry. Our results in this model highlight the importance of local FDG administration during diagnostic imaging to precisely assess early peritoneal manifestations of other malignancies (colon, stomach, ovary). These findings also support the importance of applying topical therapies, in addition to systemic treatments in peritoneal cancer spread.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2530-2530
Author(s):  
Christina L. Kress ◽  
Marina Konopleva ◽  
Maryla Krajewska ◽  
Vanesa Martinez-Garcia ◽  
Sophie Lefebvre ◽  
...  

Abstract The synthetic triterpenoid 2-Cyano-3,12-Dioxooleana-1,9-Dien-28-Oic Acid (CDDO) induces apoptosis of leukemia cells through a novel mechanism and has recently entered Phase I human clinical trials. We studied the effects of CDDO and its imidazolide derivative (CDDO-Im) on cultured human chronic lymphocytic leukemia (CLL) cells and on B cells from TRAF2DN/Bcl-2 transgenic mice, a new mouse model of CLL and small B cell lymphoma (SBL). Both triterpenoids efficiently induced death of malignant human and mouse B-cells ex vivo, although CDDO-Im was over 10-fold more potent than CDDO. Treating TRAF2DN/Bcl-2 mice that had developed leukemia with liposome-formulated CDDO or CDDO-Im resulted in significant reductions of B cells in blood, spleen and lung, with CDDO-Im more potent than CDDO, while treatment with empty liposomes had no impact on disease. Analysis of blood cells recovered from treated mice showed that CDDO-Im is a potent inducer of cell dead in vivo. Furthermore, CDDO-Im efficiently eradicated mouse CLL cells but had a lesser effect on the viability of normal B cells. These results demonstrate that triterpenoids CDDO and CDDO-Im reduce leukemia and lymphoma burden in vivo in a transgenic mouse model of CLL/SBL and suggest that CDDO-based synthetic triterpenoids should be tested for clinical activity in patients with CLL. Our results also provide evidence of the suitability of our mouse model of CLL/SBL as a preclinical platform for chemotherapeutic drug testing.


Author(s):  
Lidia Bellés ◽  
Andrea Dimiziani ◽  
Stergios Tsartsalis ◽  
Philippe Millet ◽  
François R Herrmann ◽  
...  

Abstract Background Impulsivity and novelty preference are both associated with an increased propensity to develop addiction-like behaviors, but their relationship and respective underlying dopamine (DA) underpinnings are not fully elucidated. Methods We evaluated a large cohort (n = 49) of Roman high- and low-avoidance rats using single photon emission computed tomography to concurrently measure in vivo striatal D2/3 receptor (D2/3R) availability and amphetamine (AMPH)-induced DA release in relation to impulsivity and novelty preference using a within-subject design. To further examine the DA-dependent processes related to these traits, midbrain D2/3-autoreceptor levels were measured using ex vivo autoradiography in the same animals. Results We replicated a robust inverse relationship between impulsivity, as measured with the 5-choice serial reaction time task, and D2/3R availability in ventral striatum and extended this relationship to D2/3R levels measured in dorsal striatum. Novelty preference was positively related to impulsivity and showed inverse associations with D2/3R availability in dorsal striatum and ventral striatum. A high magnitude of AMPH-induced DA release in striatum predicted both impulsivity and novelty preference, perhaps owing to the diminished midbrain D2/3-autoreceptor availability measured in high-impulsive/novelty-preferring Roman high-avoidance animals that may amplify AMPH effect on DA transmission. Mediation analyses revealed that while D2/3R availability and AMPH-induced DA release in striatum are both significant predictors of impulsivity, the effect of striatal D2/3R availability on novelty preference is fully mediated by evoked striatal DA release. Conclusions Impulsivity and novelty preference are related but mediated by overlapping, yet dissociable, DA-dependent mechanisms in striatum that may interact to promote the emergence of an addiction-prone phenotype.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii111-ii111
Author(s):  
Lan Hoang-Minh ◽  
Angelie Rivera-Rodriguez ◽  
Fernanda Pohl-Guimarães ◽  
Seth Currlin ◽  
Christina Von Roemeling ◽  
...  

Abstract SIGNIFICANCE Adoptive T cell therapy (ACT) has emerged as the most effective treatment against advanced malignant melanoma, eliciting remarkable objective clinical responses in up to 75% of patients with refractory metastatic disease, including within the central nervous system. Immunologic surrogate endpoints correlating with treatment outcome have been identified in these patients, with clinical responses being dependent on the migration of transferred T cells to sites of tumor growth. OBJECTIVE We investigated the biodistribution of intravenously or intraventricularly administered T cells in a murine model of glioblastoma at whole body, organ, and cellular levels. METHODS gp100-specific T cells were isolated from the spleens of pmel DsRed transgenic C57BL/6 mice and injected intravenously or intraventricularly, after in vitro expansion and activation, in murine KR158B-Luc-gp100 glioma-bearing mice. To determine transferred T cell spatial distribution, the brain, lymph nodes, heart, lungs, spleen, liver, and kidneys of mice were processed for 3D imaging using light-sheet and multiphoton imaging. ACT T cell quantification in various organs was performed ex vivo using flow cytometry, 2D optical imaging (IVIS), and magnetic particle imaging (MPI) after ferucarbotran nanoparticle transfection of T cells. T cell biodistribution was also assessed in vivo using MPI. RESULTS Following T cell intravenous injection, the spleen, liver, and lungs accounted for more than 90% of transferred T cells; the proportion of DsRed T cells in the brains was found to be very low, hovering below 1%. In contrast, most ACT T cells persisted in the tumor-bearing brains following intraventricular injections. ACT T cells mostly concentrated at the periphery of tumor masses and in proximity to blood vessels. CONCLUSIONS The success of ACT immunotherapy for brain tumors requires optimization of delivery route, dosing regimen, and enhancement of tumor-specific lymphocyte trafficking and effector functions to achieve maximal penetration and persistence at sites of invasive tumor growth.


2012 ◽  
Vol 278 (1-2) ◽  
pp. 158-165 ◽  
Author(s):  
Tamás Kobezda ◽  
Sheida Ghassemi-Nejad ◽  
Tibor T. Glant ◽  
Katalin Mikecz

2022 ◽  
Author(s):  
Michael Valente ◽  
Nils Collinet ◽  
Thien-Phong Vu Manh ◽  
Karima Naciri ◽  
Gilles Bessou ◽  
...  

Plasmacytoid dendritic cells (pDC) were identified about 20 years ago, based on their unique ability to rapidly produce copious amounts of all subsets of type I and type III interferon (IFN-I/III) upon virus sensing, while being refractory to infection. Yet, the identity and physiological functions of pDC are still a matter of debate, in a large part due to their lack of specific expression of any single cell surface marker or gene that would allow to track them in tissues and to target them in vivo with high specificity and penetrance. Indeed, recent studies showed that previous methods that were used to identify or deplete pDC also targeted other cell types, including pDC-like cells and transitional DC (tDC) that were proposed to be responsible for all the antigen presentation ability previously attributed to steady state pDC. Hence, improving our understanding of the nature and in vivo choreography of pDC physiological functions requires the development of novel tools to unambiguously identify and track these cells, including in comparison to pDC-like cells and tDC. Here, we report successful generation of a pDC-reporter mouse model, by using an intersectional genetic strategy based on the unique co-expression of Siglech and Pacsin1 in pDC. This pDC-Tomato mouse strain allows specific ex vivo and in situ detection of pDC. Breeding them with Zbtb46GFP mice allowed side-by-side purification and transcriptional profiling by single cell RNA sequencing of bona fide pDC, pDC-like cells and tDC, in comparison to type 1 and 2 conventional DC (cDC1 and cDC2), both at steady state and during a viral infection, revealing diverging activation patterns of pDC-like cells and tDC. Finally, by breeding pDC-Tomato mice with Ifnb1EYFP mice, we determined the choreography of pDC recruitment to the micro-anatomical sites of viral replication in the spleen, with initially similar but later divergent behaviors of the pDC that engaged or not into IFN-I production. Our novel pDC-Tomato mouse model, and newly identified gene modules specific to combinations of DC types and activations states, will constitute valuable resources for a deeper understanding of the functional division of labor between DC types and its molecular regulation at homeostasis and during viral infections.


2020 ◽  
Vol 6 (26) ◽  
pp. eaba4498 ◽  
Author(s):  
Shreya Goel ◽  
Guodong Zhang ◽  
Prashant Dogra ◽  
Sara Nizzero ◽  
Vittorio Cristini ◽  
...  

It is challenging to design effective drug delivery systems (DDS) that target metastatic breast cancers (MBC) because of lack of competent imaging and image analysis protocols that suitably capture the interactions between DDS and metastatic lesions. Here, we integrate high temporal resolution of in vivo whole-body PET-CT, ex vivo whole-organ optical imaging, high spatial resolution of confocal microscopy, and mathematical modeling, to systematically deconstruct the trafficking of injectable nanoparticle generators encapsulated with polymeric doxorubicin (iNPG-pDox) in pulmonary MBC. iNPG-pDox accumulated substantially in metastatic lungs, compared to healthy lungs. Intratumoral distribution and retention of iNPG-pDox varied with lesion size, possibly induced by locally remodeled microenvironment. We further used multiscale imaging and mathematical simulations to provide improved drug delivery strategies for MBC. Our work presents a multidisciplinary translational toolbox to evaluate transport and interactions of DDS within metastases. This knowledge can be recursively applied to rationally design advanced therapies for metastatic cancers.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3609 ◽  
Author(s):  
Pulagam ◽  
Gona ◽  
Gómez-Vallejo ◽  
Meijer ◽  
Zilberfain ◽  
...  

Background: Boron Neutron Capture Therapy (BNCT) is a binary approach to cancer therapy that requires accumulation of boron atoms preferentially in tumour cells. This can be achieved by using nanoparticles as boron carriers and taking advantage of the enhanced permeability and retention (EPR) effect. Here, we present the preparation and characterization of size and shape-tuned gold NPs (AuNPs) stabilised with polyethylene glycol (PEG) and functionalized with the boron-rich anion cobalt bis(dicarbollide), commonly known as COSAN. The resulting NPs were radiolabelled with 124I both at the core and the shell, and were evaluated in vivo in a mouse model of human fibrosarcoma (HT1080 cells) using positron emission tomography (PET). Methods: The thiolated COSAN derivatives for subsequent attachment to the gold surface were synthesized by reaction of COSAN with tetrahydropyran (THP) followed by ring opening using potassium thioacetate (KSAc). Iodination on one of the boron atoms of the cluster was also carried out to enable subsequent radiolabelling of the boron cage. AuNPs grafted with mPEG-SH (5 Kda) and thiolated COSAN were prepared by ligand displacement. Radiolabelling was carried out both at the shell (isotopic exchange) and at the core (anionic absorption) of the NPs using 124I to enable PET imaging. Results: Stable gold nanoparticles simultaneously functionalised with PEG and COSAN (PEG-AuNPs@[4]−) with hydrodynamic diameter of 37.8 ± 0.5 nm, core diameter of 19.2 ± 1.4 nm and ξ-potential of −18.0 ± 0.7 mV were obtained. The presence of the COSAN on the surface of the NPs was confirmed by Raman Spectroscopy and UV-Vis spectrophotometry. PEG-AuNPs@[4]− could be efficiently labelled with 124I both at the core and the shell. Biodistribution studies in a xenograft mouse model of human fibrosarcoma showed major accumulation in liver, lungs and spleen, and poor accumulation in the tumour. The dual labelling approach confirmed the in vivo stability of the PEG-AuNPs@[4]−. Conclusions: PEG stabilized, COSAN-functionalised AuNPs could be synthesized, radiolabelled and evaluated in vivo using PET. The low tumour accumulation in the animal model assayed points to the need of tuning the size and geometry of the gold core for future studies.


Sign in / Sign up

Export Citation Format

Share Document