scholarly journals Optimal ferrofluids for magnetic cooling devices

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. S. Pattanaik ◽  
V. B. Varma ◽  
S. K. Cheekati ◽  
V. Chaudhary ◽  
R. V. Ramanujan

AbstractSuperior passive cooling technologies are urgently required to tackle device overheating, consequent performance degradation, and service life reduction. Magnetic cooling, governed by the thermomagnetic convection of a ferrofluid, is a promising emerging passive heat transfer technology to meet these challenges. Hence, we studied the performance metrics, non-dimensional parameters, and thermomagnetic cooling performance of various ferrite and metal-based ferrofluids. The magnetic pressure, friction factor, power transfer, and exergy loss were determined to predict the performance of such cooling devices. We also investigated the significance of the magnetic properties of the nanoparticles used in the ferrofluid on cooling performance. γ-Fe2O3, Fe3O4, and CoFe2O4 nanoparticles exhibited superior cooling performance among ferrite-based ferrofluids. FeCo nanoparticles had the best cooling performance for the case of metallic ferrofluids. The saturation magnetization of the magnetic nanoparticles is found to be a significant parameter to enhance heat transfer and heat load cooling. These results can be used to select the optimum magnetic nanoparticle-based ferrofluid for a specific magnetic cooling device application.

2019 ◽  
Vol 23 (5 Part B) ◽  
pp. 3015-3024
Author(s):  
Qiang Xie ◽  
Zuobing Chen ◽  
Gong Chen ◽  
Yongjie Yu ◽  
Zheyu Zhao

Spray cooling has been widely employed in many applications due to its high flux removal ability. A previous study has been conducted to reveal the large-scale spray cooling performance of an industrial used single nozzle. Continuously, influence of multiple-nozzle distribution has also been numerically investigated in present work. The mean heat flux and its standard deviation and uniformity are used to qualify the cooling performance. A flat wall with 1.6 m in length and 1.0 m in width has been taken as the research object. Effects of nozzle number, distance and offset have been parametrically compared. It is found that increasing nozzle number could promote mean heat flux, improve the uniformity of cooling patterns and enhance heat transfer performance. A best nozzle number of 10 could be obtained by an equation fitting. Decreasing nozzle distance turns out to be detrimental to heat transfer. The reason comes from the collisions and interactions of two too adjacent nozzles. Based on choices in real practice, two types of arrays i. e. perpendicular and skew array have been discussed and compared. It is concluded that the skew array could obtain higher heat flux with more uniform distribution.


Author(s):  
Ram Ranjan ◽  
Suresh V. Garimella ◽  
Jayathi Y. Murthy

The topology and geometry of microstructures play a crucial role in determining heat transfer performance in passive cooling devices such as heat pipes. It is therefore important to characterize microstructures based on their wicking performance, the thermal conduction resistance of the liquid filling the microstructure, and the thin-film characteristics of the liquid meniscus. In the present study, the free-surface shapes of the static liquid meniscus in common microstructures have been modeled using the program, Surface Evolver, for zero Bond number. Four well-defined topologies, viz., surfaces with parallel rectangular ribs, horizontal parallel cylinders, vertically aligned cylinders, and spheres (the latter two in both square and hexagonal packing arrangements), have been modeled. Non-dimensional capillary pressure, average distance of the free liquid surface from solid walls (a measure of the conduction resistance of the liquid), total exposed area and thin-film percentage of surface area of the liquid meniscus have been computed. These parameters are presented as functions of the non-dimensional geometrical parameters of the microstructures, volume of the liquid filling the structure, as well as the contact angle between the liquid and solid. Based on these non-dimensional performance parameters, the microstructure, contact angle and non-dimensional liquid volume for the best performance are identified.


2016 ◽  
Vol 40 (5) ◽  
pp. 947-958 ◽  
Author(s):  
Li-Chieh Hsu ◽  
Guo-Wei Wong ◽  
Kung-Ting Chen

The influence factors on the heat transfer performance of a loop thermosyphon system, a passive cooling device, are studied systematically. The parameters investigated include types of enhanced boiling structure, the depth to width ratio of enhanced boiling structures, the gap of evaporator, the condenser height and the inclination of evaporator. The results show the depth to width ratio and the condenser height has positive influences on the heat transfer performance. An optimal channel gap of evaporator exists and possesses better heat transfer performance. The inclination effect of evaporator may not be favorable to heat transfer. Among those, the horizontal and 90° inclination of evaporator has better cooling performance.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 58
Author(s):  
Andraž Bradeško ◽  
Lovro Fulanović ◽  
Marko Vrabelj ◽  
Aleksander Matavž ◽  
Mojca Otoničar ◽  
...  

Despite the challenges of practical implementation, electrocaloric (EC) cooling remains a promising technology because of its good scalability and high efficiency. Here, we investigate the feasibility of an EC cooling device that couples the EC and electromechanical (EM) responses of a highly functionally, efficient, lead magnesium niobate ceramic material. We fabricated multifunctional cantilevers from this material and characterized their electrical, EM and EC properties. Two active cantilevers were stacked in a cascade structure, forming a proof-of-concept device, which was then analyzed in detail. The cooling effect was lower than the EC effect of the material itself, mainly due to the poor solid-to-solid heat transfer. However, we show that the use of ethylene glycol in the thermal contact area can significantly reduce the contact resistance, thereby improving the heat transfer. Although this solution is most likely impractical from the design point of view, the results clearly show that in this and similar cooling devices, a non-destructive, surface-modification method, with the same effectiveness as that of ethylene glycol, will have to be developed to reduce the thermal contact resistance. We hope this study will motivate the further development of multifunctional cooling devices.


Author(s):  
Junnosuke Okajima ◽  
Atsuki Komiya ◽  
Shigenao Maruyama

The objective of this work is to experimentally and numerically evaluate small-scale cryosurgery using an ultrafine cryoprobe. The outer diameter (OD) of the cryoprobe was 550 μm. The cooling performance of the cryoprobe was tested with a freezing experiment using hydrogel at 37 °C. As a result of 1 min of cooling, the surface temperature of the cryoprobe reached −35 °C and the radius of the frozen region was 2 mm. To evaluate the temperature distribution, a numerical simulation was conducted. The temperature distribution in the frozen region and the heat transfer coefficient was discussed.


2013 ◽  
Vol 738-739 ◽  
pp. 441-445
Author(s):  
Sergey Taskaev ◽  
Vasiliy D. Buchelnikov ◽  
Anatoliy Pellenen ◽  
Dmitriy Bataev ◽  
Konstantin Skokov ◽  
...  

In this work we investigate magnetocaloric effect and heat capacity of Gd cold rolled ribbons. Such materials are easy to produce, they are flexible and convenient for using in magnetic cooling devices. It is shown that the magnetocaloric effect is strongly dependent on thickness of the ribbons. Severely rolled ribbons demonstrate rather a small magnetocaloric effect. However, a special heat treatment procedure makes it possible to enhance the effect up to the value observed in polycrystalline Gd.


Author(s):  
Vinod U. Kakade ◽  
Steven J. Thorpe ◽  
Miklós Gerendás

The thermal management of aero gas turbine engine combustion systems commonly employs effusion-cooling in combination with various cold-side convective cooling schemes. The combustor liner incorporates many small holes which are usually set in staggered arrays and at a shallow angle to the cooled surface; relatively cold compressor delivery air is then allowed to flow through these holes to provide the full-coverage film-cooling effect. The efficient design of such systems requires robust correlations of film-cooling effectiveness and heat transfer coefficient at a range of aero-thermal conditions, and the use of appropriately validated computational models. However, the flow conditions within a combustor are characterised by particularly high turbulence levels and relatively large length scales. The experimental evidence for performance of effusion-cooling under such flow conditions is currently sparse. The work reported here is aimed at quantifying typical effusion-cooling performance at a range of combustor relevant free-stream conditions (high turbulence), and also to assess the importance of modeling the coolant to free-stream density ratio. Details of a new laboratory wind-tunnel facility for the investigation of film-cooling at high turbulence levels are reported. For a typical combustor effusion geometry that uses cylindrical holes, spatially resolved measurements of adiabatic effectiveness, heat transfer coefficient and net heat flux reduction are presented for a range of blowing ratios (0.48 to 2), free-stream turbulence conditions (4 and 22%) and density ratios (0.97 and 1.47). The measurements reveal that elevated free-stream turbulence impacts on both the adiabatic effectiveness and heat transfer coefficient, although this is dependent upon the blowing ratio being employed and particularly the extent to which the coolant jets detach from the surface. At low blowing ratios the presence of high turbulence levels causes increased lateral spreading of the coolant adjacent to the injection points, but more rapid degradation in the downstream direction. At high blowing ratios, high turbulence levels cause a modest increase in effectiveness due to turbulent transport of the detached coolant fluid. Additionally, the augmentation of heat transfer coefficient caused by the coolant injection is seen to be increased at high free-stream turbulence levels.


Author(s):  
Bingran Li ◽  
Cunliang Liu ◽  
Lin Ye ◽  
Huiren Zhu ◽  
Fan Zhang

Abstract To investigate the application of ribbed cross-flow coolant channels with film hole effusion and the effects of the internal cooling configuration on film cooling, experimental and numerical studies are conducted on the effect of the relative position of the film holes and different orientation ribs on the film cooling performance. Three cases of the relative position of the film holes and different orientation ribs (post-rib, centered, and pre-rib) in two ribbed cross-flow channels (135° and 45° orientation ribs) are investigated. The film cooling performances are measured under three blowing ratios by the transient liquid crystal measurement technique. A RANS simulation with the realizable k-ε turbulence model and enhanced wall treatment is performed. The results show that the cooling effectiveness and the downstream heat transfer coefficient for the 135° rib are basically the same in the three position cases, and the differences between the local effectiveness average values for the three are no more than 0.04. The differences between the heat transfer coefficients are no more than 0.1. The “pre-rib” and “centered” cases are studied for the 45° rib, and the position of the structures has little effect on the film cooling performance. In the different position cases, the outlet velocity distribution of the film holes, the jet pattern and the discharge coefficient are consistent with the variation in the cross flow. The related research previously published by the authors showed that the inclination of the ribs with respect to the holes affects the film cooling performance. This study reveals that the relative positions of the ribs and holes have little effect on the film cooling performance. This paper expands and improves the study of the effect of the internal cooling configuration on film cooling and makes a significant contribution to the design and industrial application of the internal cooling channel of a turbine blade.


Author(s):  
Sam Ghazi-Hesami ◽  
Dylan Wise ◽  
Keith Taylor ◽  
Peter Ireland ◽  
Étienne Robert

Abstract Turbulators are a promising avenue to enhance heat transfer in a wide variety of applications. An experimental and numerical investigation of heat transfer and pressure drop of a broken V (chevron) turbulator is presented at Reynolds numbers ranging from approximately 300,000 to 900,000 in a rectangular channel with an aspect ratio (width/height) of 1.29. The rib height is 3% of the channel hydraulic diameter while the rib spacing to rib height ratio is fixed at 10. Heat transfer measurements are performed on the flat surface between ribs using transient liquid crystal thermography. The experimental results reveal a significant increase of the heat transfer and friction factor of the ribbed surface compared to a smooth channel. Both parameters increase with Reynolds number, with a heat transfer enhancement ratio of up to 2.15 (relative to a smooth channel) and a friction factor ratio of up to 6.32 over the investigated Reynolds number range. Complementary CFD RANS (Reynolds-Averaged Navier-Stokes) simulations are performed with the κ-ω SST turbulence model in ANSYS Fluent® 17.1, and the numerical estimates are compared against the experimental data. The results reveal that the discrepancy between the experimentally measured area averaged Nusselt number and the numerical estimates increases from approximately 3% to 13% with increasing Reynolds number from 339,000 to 917,000. The numerical estimates indicate turbulators enhance heat transfer by interrupting the boundary layer as well as increasing near surface turbulent kinetic energy and mixing.


Sign in / Sign up

Export Citation Format

Share Document