scholarly journals Evaluation of 2D super-resolution ultrasound imaging of the rat renal vasculature using ex vivo micro-computed tomography

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sofie Bech Andersen ◽  
Iman Taghavi ◽  
Hans Martin Kjer ◽  
Stinne Byrholdt Søgaard ◽  
Carsten Gundlach ◽  
...  

AbstractSuper-resolution ultrasound imaging (SRUS) enables in vivo microvascular imaging of deeper-lying tissues and organs, such as the kidneys or liver. The technique allows new insights into microvascular anatomy and physiology and the development of disease-related microvascular abnormalities. However, the microvascular anatomy is intricate and challenging to depict with the currently available imaging techniques, and validation of the microvascular structures of deeper-lying organs obtained with SRUS remains difficult. Our study aimed to directly compare the vascular anatomy in two in vivo 2D SRUS images of a Sprague–Dawley rat kidney with ex vivo μCT of the same kidney. Co-registering the SRUS images to the μCT volume revealed visually very similar vascular features of vessels ranging from ~ 100 to 1300 μm in diameter and illustrated a high level of vessel branching complexity captured in the 2D SRUS images. Additionally, it was shown that it is difficult to use μCT data of a whole rat kidney specimen to validate the super-resolution capability of our ultrasound scans, i.e., validating the actual microvasculature of the rat kidney. Lastly, by comparing the two imaging modalities, fundamental challenges for 2D SRUS were demonstrated, including the complexity of projecting a 3D vessel network into 2D. These challenges should be considered when interpreting clinical or preclinical SRUS data in future studies.

Diagnostics ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 862
Author(s):  
Sofie Bech Andersen ◽  
Iman Taghavi ◽  
Carlos Armando Villagómez Hoyos ◽  
Stinne Byrholdt Søgaard ◽  
Fredrik Gran ◽  
...  

In vivo monitoring of the microvasculature is relevant since diseases such as diabetes, ischemia, or cancer cause microvascular impairment. Super-resolution ultrasound imaging allows in vivo examination of the microvasculature by detecting and tracking sparsely distributed intravascular microbubbles over a minute-long period. The ability to create detailed images of the renal vasculature of Sprague-Dawley rats using a modified clinical ultrasound platform was investigated in this study. Additionally, we hypothesized that early ischemic damage to the renal microcirculation could be visualized. After a baseline scan of the exposed kidney, 10 rats underwent clamping of the renal vein (n = 5) or artery (n = 5) for 45 min. The kidneys were rescanned at the onset of clamp release and after 60 min of reperfusion. Using a processing pipeline for tissue motion compensation and microbubble tracking, super-resolution images with a very high level of detail were constructed. Image filtration allowed further characterization of the vasculature by isolating specific vessels such as the ascending vasa recta with a 15–20 μm diameter. Using the super-resolution images alone, it was only possible for six assessors to consistently distinguish the healthy renal microvasculature from the microvasculature at the onset of vein clamp release. Future studies will aim at attaining quantitative estimations of alterations in the renal microvascular blood flow using super-resolution ultrasound imaging.


2021 ◽  
Vol 5 ◽  
pp. 239821282110363
Author(s):  
Malcolm J. W. Prior ◽  
Tobias Bast ◽  
Stephanie McGarrity ◽  
Jürgen Goldschmidt ◽  
Daniel Vincenz ◽  
...  

There is currently no brain atlas available to specifically determine stereotaxic coordinates for neurosurgery in Lister hooded rats despite the popularity of this strain for behavioural neuroscience studies in the United Kingdom and elsewhere. We have created a dataset, which we refer to as ‘Ratlas-LH’ (for Lister hooded). Ratlas-LH combines in vivo magnetic resonance images of the brain of young adult male Lister hooded rats with ex vivo micro-computed tomography images of the ex vivo skull, as well as a set of delineations of brain regions, adapted from the Waxholm Space Atlas of the Sprague Dawley Rat Brain. Ratlas-LH was produced with an isotropic resolution of 0.15 mm. It has been labelled in such a way as to provide a stereotaxic coordinate system for the determination of distances relative to the skull landmark of bregma. We have demonstrated that the atlas can be used to determine stereotaxic coordinates to accurately target brain regions in the Lister hooded rat brain. Ratlas-LH is freely available to facilitate neurosurgical procedures in the Lister hooded rat.


2021 ◽  
pp. neurintsurg-2020-016798
Author(s):  
Maksim Shapiro ◽  
Melanie Walker ◽  
Kate T Carroll ◽  
Michael R Levitt ◽  
Eytan Raz ◽  
...  

Adoption of middle meningeal artery embolization in the management of chronic subdural hematomas has led to a renewed interest in dural vascular anatomy. The readily identifiable major dural arteries and potential hazards associated with their embolization are well described. Less emphasized are several levels of intrinsic dural angioarchitecture, despite their more direct relationship to dural based diseases, such as subdural hematoma and dural fistula. Fortunately, microvascular aspects of dural anatomy, previously limited to ex vivo investigations, are becoming increasingly accessible to in vivo visualization, setting the stage for synthesis of the old and the new, and providing a rationale for the endovascular approach to subdural collections in particular. In contrast with traditional anatomical didactics, where descriptions advance from larger trunks to smaller pedicles, we present a strategic approach that proceeds from a fundamental understanding of the dural microvasculature and its relationship to larger vessels.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 861
Author(s):  
Elizabeth E. Niedert ◽  
Chenghao Bi ◽  
Georges Adam ◽  
Elly Lambert ◽  
Luis Solorio ◽  
...  

A microrobot system comprising an untethered tumbling magnetic microrobot, a two-degree-of-freedom rotating permanent magnet, and an ultrasound imaging system has been developed for in vitro and in vivo biomedical applications. The microrobot tumbles end-over-end in a net forward motion due to applied magnetic torque from the rotating magnet. By turning the rotational axis of the magnet, two-dimensional directional control is possible and the microrobot was steered along various trajectories, including a circular path and P-shaped path. The microrobot is capable of moving over the unstructured terrain within a murine colon in in vitro, in situ, and in vivo conditions, as well as a porcine colon in ex vivo conditions. High-frequency ultrasound imaging allows for real-time determination of the microrobot’s position while it is optically occluded by animal tissue. When coated with a fluorescein payload, the microrobot was shown to release the majority of the payload over a 1-h time period in phosphate-buffered saline. Cytotoxicity tests demonstrated that the microrobot’s constituent materials, SU-8 and polydimethylsiloxane (PDMS), did not show a statistically significant difference in toxicity to murine fibroblasts from the negative control, even when the materials were doped with magnetic neodymium microparticles. The microrobot system’s capabilities make it promising for targeted drug delivery and other in vivo biomedical applications.


2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Clare Y. L. Chao ◽  
Gabriel Y. F. Ng ◽  
Kwok-Kuen Cheung ◽  
Yong-Ping Zheng ◽  
Li-Ke Wang ◽  
...  

An evaluation of wound mechanics is crucial in reflecting the wound healing status. The present study examined the biomechanical properties of healing rat skin wounds in vivo and ex vivo. Thirty male Sprague-Dawley rats, each with a 6 mm full-thickness circular punch biopsied wound at both posterior hind limbs were used. The mechanical stiffness at both the central and margins of the wound was measured repeatedly in five rats over the same wound sites to monitor the longitudinal changes over time of before wounding, and on days 0, 3, 7, 10, 14, and 21 after wounding in vivo by using an optical coherence tomography-based air-jet indentation system. Five rats were euthanized at each time point, and the biomechanical properties of the wound tissues were assessed ex vivo using a tensiometer. At the central wound bed region, the stiffness measured by the air-jet system increased significantly from day 0 (17.2%), peaked at day 7 (208.3%), and then decreased progressively until day 21 (40.2%) as compared with baseline prewounding status. The biomechanical parameters of the skin wound samples measured by the tensiometer showed a marked reduction upon wounding, then increased with time (all p < 0.05). On day 21, the ultimate tensile strength of the skin wound tissue approached 50% of the normal skin; while the stiffness of tissue recovered at a faster rate, reaching 97% of its prewounded state. Our results suggested that it took less time for healing wound tissues to recover their stiffness than their maximal strength in rat skin. The stiffness of wound tissues measured by air-jet could be an indicator for monitoring wound healing and contraction.


2006 ◽  
Vol 290 (5) ◽  
pp. F1034-F1043 ◽  
Author(s):  
Tarek M. El-Achkar ◽  
Xiaoping Huang ◽  
Zoya Plotkin ◽  
Ruben M. Sandoval ◽  
Georges J. Rhodes ◽  
...  

Toll-like receptors (TLRs) are now recognized as the major receptors for microbial pathogens on cells of the innate immune system. Recently, TLRs were also identified in many organs including the kidney. However, the cellular distribution and role of these renal TLRs remain largely unknown. In this paper, we investigated the expression of TLR4 in a cecal ligation and puncture (CLP) model of sepsis in Sprague-Dawley rats utilizing fluorescence microscopy. In sham animals, TLR4 was expressed predominantly in Tamm-Horsfall protein (THP)-positive tubules. In CLP animals, TLR4 expression increased markedly in all tubules (proximal and distal), glomeruli, and the renal vasculature. The staining showed a strong apical distribution in all tubules. A moderately less intense cellular signal colocalized partially with the Golgi apparatus. In addition, kidneys from septic rats showed increased expression of CD14 and THP. They each colocalized strongly with TLR4, albeit in different tubular segments. We also imaged the kidneys of live septic animals with two-photon microscopy after fluorescent lipopolysaccharide (LPS) injection. Within 10 min, LPS was seen at the brush border of some proximal tubules. Within 60 min, LPS was fully cytoplasmic in proximal tubules. Conversely, distal tubules showed no LPS uptake. We conclude that TLR4, CD14, and THP have specific renal cellular and tubular expression patterns that are markedly affected by sepsis. Systemic endotoxin can freely access the tubular and cellular sites where these proteins are present. Therefore, locally expressed TLRs and other interacting proteins could potentially modulate the renal response to systemic sepsis.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 22
Author(s):  
Huy Xuan Ngo ◽  
Quang Ngoc Dong ◽  
Yunpeng Bai ◽  
Jingjing Sha ◽  
Shinji Ishizuka ◽  
...  

Uncalcined/unsintered hydroxyapatite and poly-l-lactide-co-glycolide (u-HA/PLLA/PGA) is a new bioresorbable nanomaterial with superior characteristics compared with current bioresorbable materials, including appropriate mechanical properties, outstanding bioactive/osteoconductive features, and remarkably shorter resorption time. Nevertheless, the bone regeneration characteristics of this nanomaterial have not been evaluated in maxillofacial reconstructive surgery. In this study, we used a rat mandible model to assess the bone regeneration ability of u-HA/PLLA/PGA material, compared with uncalcined/unsintered hydroxyapatite and poly-l-lactide acid (u-HA/PLLA) material, which has demonstrated excellent bone regenerative ability. A 4-mm-diameter defect was created at the mandibular angle area in 28 Sprague Dawley male rats. The rats were divided into three groups: u-HA/PLLA/PGA (u-HA/PLLA/PGA graft + defect), u-HA/PLLA (u-HA/PLLA graft + defect), and sham control (defect alone). At 1, 3, 8, and 16 weeks after surgeries, the rats were sacrificed and assessed by micro-computed tomography, histological analysis with hematoxylin and eosin staining, and immunohistochemical analyses. The results confirmed that the accelerated bone bioactive/regenerative osteoconduction of u-HA/PLLA/PGA was comparable with that of u-HA/PLLA in the rat mandible model. Furthermore, this new regenerative nanomaterial was able to more rapidly induce bone formation in the early stage and had great potential for further clinical applications in maxillofacial reconstructive surgery.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Louisa Mezache ◽  
Heather Struckman ◽  
Anna Phillips ◽  
Stephen Baine ◽  
Amara Greer-short ◽  
...  

Atrial fibrillation (AF), the most common arrhythmia, is associated with inflammation and vascular dysfunction. AF patients have elevated levels of vascular endothelial growth factor (VEGF; 90-580 pg/ml), which promotes vascular leak and edema. We have previously identified edema-induced disruption of sodium channel (Na V 1.5) -rich intercalated disk (ID) nanodomains as a novel arrhythmia mechanism. We hypothesized that (i) elevated VEGF levels promote AF by disrupting ID nanodomains, and slowing atrial conduction, and (ii) protection of the vascular barrier can prevent these arrhythmias. Clinically-relevant VEGF levels (500 pg/ml, 60 minutes) increased FITC-dextran extravasation (99.3% vs. 24.3% in vehicle controls) in WT mouse hearts, consistent with increased vascular leak. Electron microscopy revealed ID nanodomain swelling, near both gap junctions (perinexi; 64±9nm vs 17±1nm) and mechanical junctions (63±4nm vs 27±2nm) in VEGF-treated hearts relative to controls. Super-resolution STORM microscopy revealed Na V 1.5 enrichment at perinexi (9±2 fold) and N-cadherin-rich sites (7±1 fold) relative to non-junctional ID sites in control hearts. VEGF reduced Na V 1.5 enrichment at both sites (6±1 and 4±1 fold, respectively), consistent with Na V 1.5 translocation from ID nanodomains. Atrial conduction, assessed by optical mapping, was slowed by VEGF (10±0.4 cm/s vs 21.3±1.3 cm/s at baseline). VEGF increased atrial arrhythmia burden both ex vivo (80% vs 0% in vehicle controls) and in vivo (70% vs 20% in vehicle controls). Next, we tested two strategies shown to prevent vascular barrier breakdown. Blocking connexin43 hemichannels (αCT11 peptide) decreased both incidence (40%) and duration (1.45±3.42s) of VEGF-induced arrhythmias. Likewise, blocking pannexin1 channels (Panx1-IL2 peptide) shortened VEGF-induced arrhythmias (2.48±0.83s). Mefloquine and spironolactone, which are small molecules that respectively inhibit Cx43 hemichannels and pannexin channels, were also found to effectively prevent VEGF-induced atrial arrhythmias. These results highlight VEGF-induced vascular leak as a novel mechanism for AF, and suggest vascular barrier protection as an anti-arrhythmic strategy.


2005 ◽  
Vol 4 (4) ◽  
pp. 7290.2005.05133 ◽  
Author(s):  
Matthew J. Hardwick ◽  
Ming-Kai Chen ◽  
Kwamena Baidoo ◽  
Martin G. Pomper ◽  
Tomás R. Guilarte

The ability to visualize the immune response with radioligands targeted to immune cells will enhance our understanding of cellular responses in inflammatory diseases. Peripheral benzodiazepine receptors (PBR) are present in monocytes and neutrophils as well as in lung tissue. We used lipopolysaccharide (LPS) as a model of inflammation to assess whether the PBR could be used as a noninvasive marker of inflammation in the lungs. Planar imaging of mice administrated 10 or 30 mg/kg LPS showed increased [123I]-( R)-PK11195 radioactivity in the thorax 2 days after LPS treatment relative to control. Following imaging, lungs from control and LPS-treated mice were harvested for ex vivo gamma counting and showed significantly increased radioactivity above control levels. The specificity of the PBR response was determined using a blocking dose of nonradioactive PK11195 given 30 min prior to radiotracer injection. Static planar images of the thorax of nonradioactive PK11195 pretreated animals showed a significantly lower level of radiotracer accumulation in control and in LPS-treated animals ( p < .05). These data show that LPS induces specific increases in PBR ligand binding in the lungs. We also used in vivo small-animal PET studies to demonstrate increased [11C]-( R)-PK11195 accumulation in the lungs of LPS-treated mice. This study suggests that measuring PBR expression using in vivo imaging techniques may be a useful biomarker to image lung inflammation.


2021 ◽  
Author(s):  
Peter R. Corridon

AbstractThe aim of the present study was to determine whether decellularized rat kidney microvascular and extracellular matrix (ECM) integrity could be preserved under in vivo conditions directly after transplantation. Whole kidneys were harvested from the Sprague Dawley rat and were decellularized by perfusion with 0.5% sodium dodecyl sulfate (SDS) for 24 hours, followed by phosphate-buffered saline (PBS) for an additional 24 hours. Decellularized kidneys were then transplanted into recipients and vascular high-molecular-weight (150-kDa) FITC dextrans were infused via the jugular vein. Blood was then allowed to flow through the decellularized transplant. Intravital multiphoton microscopy confirmed the suitable confinement of the dextrans within vascular tracks and preservation of the decellularized architecture that was monitored in the shortterm post transplantation.New and NoteworthyThe study confirmed in vivo microvascular and ECM preservation in the short-term post transplantation.


Sign in / Sign up

Export Citation Format

Share Document