scholarly journals Role of miRNAs shuttled by mesenchymal stem cell-derived small extracellular vesicles in modulating neuroinflammation

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Debora Giunti ◽  
Chiara Marini ◽  
Benedetta Parodi ◽  
Cesare Usai ◽  
Marco Milanese ◽  
...  

AbstractMesenchymal stromal/stem cells (MSCs) are characterized by neuroprotective, immunomodulatory, and neuroregenerative properties, which support their therapeutic potential for inflammatory/neurodegenerative diseases, including multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). One mode of action through which MSCs exert their immunomodulatory effects is release of extracellular vesicles that carry proteins, mRNAs, and microRNAs (miRNAs), which, once transferred, modify the function of target cells. We identified nine miRNAs significantly dysregulated in IFN-γ-primed MSCs, but present at different levels in their derived small extracellular vesicles (s-EV). We show that miR-467f and miR-466q modulate the pro-inflammatory phenotype of activated N9 microglia cells and of primary microglia acutely isolated from late symptomatic SOD1G93A mice, a murine ALS model, by downregulating Tnf and Il1b expression. Further analysis of the mode of action of miR-467f and miR-466q indicated that they dampen the pro-inflammatory phenotype of microglia by modulating p38 MAPK signaling pathway via inhibition of expression of their target genes, Map3k8 and Mk2. Finally, we demonstrated that in vivo administration of s-EV leads to decreased expression of neuroinflammation markers in the spinal cord of EAE-affected mice, albeit without affecting disease course. Overall, our data suggest that MSC-derived exosomes could affect neuroinflammation possibly through specific immunomodulatory miRNAs acting on microglia.

2019 ◽  
Author(s):  
Debora Giunti ◽  
Chiara Marini ◽  
Benedetta Parodi ◽  
Cesare Usai ◽  
Marco Milanese ◽  
...  

Abstract Background Mesenchymal stromal/stem cells (MSCs) are characterized by neuroprotective, immunomodulatory, and neuroregenerative properties, which support their therapeutic potential for neurodegenerative diseases driven by microglia-associated inflammation, such as amyotrophic lateral sclerosis (ALS). One mode of action through which MSCs exert their immunomodulatory effects is the release of extracellular vesicles, including exosomes, that carry proteins, mRNAs, and microRNAs (miRNAs), which, once transferred, modify the function of target cells. We have investigated the role of miRNAs present in exosomes derived from IFN-γ-primed mouse MSCs in the modulation of microglia activation, and analysed their effect on target genes and signaling pathways. Methods We compared miRNA expression in IFN-γ-primed vs unprimed mouse MSCs by microarray and measured the levels of relevant miRNAs in their respective exosomes through RT-PCR. To assess the effect of dysregulated MSC-derived miRNAs, we transfected lipopolysaccharide-activated N9 microglial line cells and primary microglia from late-symptomatic SOD1G93A ALS mice with their specific mimics and analysed the mRNA expression of pro/anti-inflammatory genes in the cells. We used mirWalk and Panther and KEGG Pathway databases to predict target genes of specific miRNAs and possible pathways they regulate. Data were compared using Student’s t-test. Results We identified nine miRNAs that were significantly dysregulated in IFN-γ-primed MSCs, but present at different levels in their derived exosomes. Transfection with three of the four miRNAs significantly upregulated in IFN-γ-primed MSC-derived exosomes, namely miR-467f, miR-466q and miR-466m-5p, could modulate the pro-inflammatory phenotype of N9 microglia by downregulating Tnf and/or Il1b expression, and/or upregulating Cx3cr1 expression. We obtained similar results in primary microglia from SOD1G93A mice transfected with miR-467f and miR-466q. Further analysis of the mode of action of miR-467f and miR-466q indicated that they dampen the pro-inflammatory phenotype of microglia by modulating the p38 MAPK signaling pathway via inhibition of the expression of their target genes, Map3k8 and Mk2. Conclusion These results suggest that exosome-mediated transfer of functional miRNAs could be one mode of action through which MSCs exert their therapeutic effect in ALS by downregulating neuroinflammatory microglia, and identify miR-467f and miR-466q as immunomodulatory miRNAs involved in this process.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1287
Author(s):  
Nur Azira Mohd Noor ◽  
Asma Abdullah Nurul ◽  
Muhammad Rajaei Ahmad Mohd Zain ◽  
Wan Khairunnisaa Wan Nor Aduni ◽  
Maryam Azlan

Osteoarthritis (OA) is a chronic degenerative disorder of the joint and its prevalence and severity is increasing owing to ageing of the population. Osteoarthritis is characterized by the degradation of articular cartilage and remodeling of the underlying bone. There is little understanding of the cellular and molecular processes involved in pathophysiology of OA. Currently the treatment for OA is limited to painkillers and anti-inflammatory drugs, which only treat the symptoms. Some patients may also undergo surgical procedures to replace the damaged joints. Extracellular vesicles (EV) play an important role in intercellular communications and their concentration is elevated in the joints of OA patients, although their mechanism is unclear. Extracellular vesicles are naturally released by cells and they carry their origin cell information to be delivered to target cells. On the other hand, mesenchymal stem cells (MSCs) are highly proliferative and have a great potential in cartilage regeneration. In this review, we provide an overview of the current OA treatments and their limitations. We also discuss the role of EV in OA pathophysiology. Finally, we highlight the therapeutic potential of MSC-derived EV in OA and their challenges.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ashley G. Zhao ◽  
Kiran Shah ◽  
Brett Cromer ◽  
Huseyin Sumer

Extracellular vesicles (EVs) are cell-derived membrane-bound nanoparticles, which act as shuttles, delivering a range of biomolecules to diverse target cells. They play an important role in maintenance of biophysiological homeostasis and cellular, physiological, and pathological processes. EVs have significant diagnostic and therapeutic potentials and have been studied both in vitro and in vivo in many fields. Mesenchymal stem cells (MSCs) are multipotent cells with many therapeutic applications and have also gained much attention as prolific producers of EVs. MSC-derived EVs are being explored as a therapeutic alternative to MSCs since they may have similar therapeutic effects but are cell-free. They have applications in regenerative medicine and tissue engineering and, most importantly, confer several advantages over cells such as lower immunogenicity, capacity to cross biological barriers, and less safety concerns. In this review, we introduce the biogenesis of EVs, including exosomes and microvesicles. We then turn more specifically to investigations of MSC-derived EVs. We highlight the great therapeutic potential of MSC-derived EVs and applications in regenerative medicine and tissue engineering.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1858
Author(s):  
Shu Hua ◽  
Peter Mark Bartold ◽  
Karan Gulati ◽  
Corey Stephen Moran ◽  
Sašo Ivanovski ◽  
...  

Extracellular vesicles (EVs) are membrane-bound lipid particles that are secreted by all cell types and function as cell-to-cell communicators through their cargos of protein, nucleic acid, lipids, and metabolites, which are derived from their parent cells. There is limited information on the isolation and the emerging therapeutic role of periodontal and dental pulp cell-derived small EVs (sEVs, <200 nm, or exosome). In this review, we discuss the biogenesis of three EV subtypes (sEVs, microvesicles and apoptotic bodies) and the emerging role of sEVs from periodontal ligament (stem) cells, gingival fibroblasts (or gingival mesenchymal stem cells) and dental pulp cells, and their therapeutic potential in vitro and in vivo. A review of the relevant methodology found that precipitation-based kits and ultracentrifugation are the two most common methods to isolate periodontal (dental pulp) cell sEVs. Periodontal (and pulp) cell sEVs range in size, from 40 nm to 2 μm, due to a lack of standardized isolation protocols. Nevertheless, our review found that these EVs possess anti-inflammatory, osteo/odontogenic, angiogenic and immunomodulatory functions in vitro and in vivo, via reported EV cargos of EV–miRNAs, EV–circRNAs, EV–mRNAs and EV–lncRNAs. This review highlights the considerable therapeutic potential of periodontal and dental pulp cell-derived sEVs in various regenerative applications.


2015 ◽  
Vol 112 (12) ◽  
pp. E1433-E1442 ◽  
Author(s):  
Masamitsu Kanada ◽  
Michael H. Bachmann ◽  
Jonathan W. Hardy ◽  
Daniel Omar Frimannson ◽  
Laura Bronsart ◽  
...  

Extracellular vesicles (EVs), specifically exosomes and microvesicles (MVs), are presumed to play key roles in cell–cell communication via transfer of biomolecules between cells. The biogenesis of these two types of EVs differs as they originate from either the endosomal (exosomes) or plasma (MVs) membranes. To elucidate the primary means through which EVs mediate intercellular communication, we characterized their ability to encapsulate and deliver different types of macromolecules from transiently transfected cells. Both EV types encapsulated reporter proteins and mRNA but only MVs transferred the reporter function to recipient cells. De novo reporter protein expression in recipient cells resulted only from plasmid DNA (pDNA) after delivery via MVs. Reporter mRNA was delivered to recipient cells by both EV types, but was rapidly degraded without being translated. MVs also mediated delivery of functional pDNA encoding Cre recombinase in vivo to tissues in transgenic Cre-lox reporter mice. Within the parameters of this study, MVs delivered functional pDNA, but not RNA, whereas exosomes from the same source did not deliver functional nucleic acids. These results have significant implications for understanding the role of EVs in cellular communication and for development of EVs as delivery tools. Moreover, studies using EVs from transiently transfected cells may be confounded by a predominance of pDNA transfer.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Soudeh Moghadasi ◽  
Marischa Elveny ◽  
Heshu Sulaiman Rahman ◽  
Wanich Suksatan ◽  
Abduladheem Turki Jalil ◽  
...  

AbstractRecently, mesenchymal stem/stromal cells (MSCs) due to their pro-angiogenic, anti-apoptotic, and immunoregulatory competencies along with fewer ethical issues are presented as a rational strategy for regenerative medicine. Current reports have signified that the pleiotropic effects of MSCs are not related to their differentiation potentials, but rather are exerted through the release of soluble paracrine molecules. Being nano-sized, non-toxic, biocompatible, barely immunogenic, and owning targeting capability and organotropism, exosomes are considered nanocarriers for their possible use in diagnosis and therapy. Exosomes convey functional molecules such as long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs), proteins (e.g., chemokine and cytokine), and lipids from MSCs to the target cells. They participate in intercellular interaction procedures and enable the repair of damaged or diseased tissues and organs. Findings have evidenced that exosomes alone are liable for the beneficial influences of MSCs in a myriad of experimental models, suggesting that MSC- exosomes can be utilized to establish a novel cell-free therapeutic strategy for the treatment of varied human disorders, encompassing myocardial infarction (MI), CNS-related disorders, musculoskeletal disorders (e.g. arthritis), kidney diseases, liver diseases, lung diseases, as well as cutaneous wounds. Importantly, compared with MSCs, MSC- exosomes serve more steady entities and reduced safety risks concerning the injection of live cells, such as microvasculature occlusion risk. In the current review, we will discuss the therapeutic potential of MSC- exosomes as an innovative approach in the context of regenerative medicine and highlight the recent knowledge on MSC- exosomes in translational medicine, focusing on in vivo researches.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Simon Chewchuk ◽  
Sanzida Jahan ◽  
David Lohnes

AbstractThe intestinal epithelium is a unique tissue, serving both as a barrier against pathogens and to conduct the end digestion and adsorption of nutrients. As regards the former, the intestinal epithelium contains a diverse repertoire of immune cells, including a variety of resident lymphocytes, macrophages and dendritic cells. These cells serve a number of roles including mitigation of infection and to stimulate regeneration in response to damage. The transcription factor Cdx2, and to a lesser extent Cdx1, plays essential roles in intestinal homeostasis, and acts as a context-dependent tumour suppressor in colorectal cancer. Deletion of Cdx2 from the murine intestinal epithelium leads to macrophage infiltration resulting in a chronic inflammatory response. However the mechanisms by which Cdx2 loss evokes this response are poorly understood. To better understand this relationship, we used a conditional mouse model lacking all intestinal Cdx function to identify potential target genes which may contribute to this inflammatory phenotype. One such candidate encodes the histocompatability complex protein H2-T3, which functions to regulate intestinal iCD8α lymphocyte activity. We found that Cdx2 occupies the H3-T3 promoter in vivo and directly regulates its expression via a Cdx response element. Loss of Cdx function leads to a rapid and pronounced attenuation of H2-T3, followed by a decrease in iCD8α cell number, an increase in macrophage infiltration and activation of pro-inflammatory cascades. These findings suggest a previously unrecognized role for Cdx in intestinal homeostasis through H2-T3-dependent regulation of iCD8α cells.


2019 ◽  
Vol 116 (11) ◽  
pp. 5102-5107 ◽  
Author(s):  
Percy Griffin ◽  
Julie M. Dimitry ◽  
Patrick W. Sheehan ◽  
Brian V. Lananna ◽  
Chun Guo ◽  
...  

Circadian dysfunction is a common attribute of many neurodegenerative diseases, most of which are associated with neuroinflammation. Circadian rhythm dysfunction has been associated with inflammation in the periphery, but the role of the core clock in neuroinflammation remains poorly understood. Here we demonstrate that Rev-erbα, a nuclear receptor and circadian clock component, is a mediator of microglial activation and neuroinflammation. We observed time-of-day oscillation in microglial immunoreactivity in the hippocampus, which was disrupted in Rev-erbα−/− mice. Rev-erbα deletion caused spontaneous microglial activation in the hippocampus and increased expression of proinflammatory transcripts, as well as secondary astrogliosis. Transcriptomic analysis of hippocampus from Rev-erbα−/− mice revealed a predominant inflammatory phenotype and suggested dysregulated NF-κB signaling. Primary Rev-erbα−/− microglia exhibited proinflammatory phenotypes and increased basal NF-κB activation. Chromatin immunoprecipitation revealed that Rev-erbα physically interacts with the promoter regions of several NF-κB–related genes in primary microglia. Loss of Rev-erbα in primary astrocytes had no effect on basal activation but did potentiate the inflammatory response to lipopolysaccharide (LPS). In vivo, Rev-erbα−/− mice exhibited enhanced hippocampal neuroinflammatory responses to peripheral LPS injection, while pharmacologic activation of Rev-erbs with the small molecule agonist SR9009 suppressed LPS-induced hippocampal neuroinflammation. Rev-erbα deletion influenced neuronal health, as conditioned media from Rev-erbα–deficient primary glial cultures exacerbated oxidative damage in cultured neurons. Rev-erbα−/− mice also exhibited significantly altered cortical resting-state functional connectivity, similar to that observed in neurodegenerative models. Our results reveal Rev-erbα as a pharmacologically accessible link between the circadian clock and neuroinflammation.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Mohsin Khan ◽  
Suresh K Verma ◽  
Alexander R Mackie ◽  
Erin Vaughan ◽  
Srikanth Garikipati ◽  
...  

Rationale: Embryonic stem cells (ESCs) hold great promise for cardiac regeneration but are susceptible to ethical concerns, lack of autologous donors and teratoma formation. Recently, it has been observed that beneficial effects of stem cells are mediated by exosomes secreted out under various physiological conditions. ESCs have the ability to produce exosomes however their effect in the context of the heart is unknown. Objective: Determine the effect of ESC derived exosomes for cardiac repair and modulation of CPCs functions in the heart following myocardial infarction. Methods and Results: Exosomes were isolated from murine ESCs (mES Ex) or embryonic fibroblasts (MEFs) by ultracentrifugation and verified by Flotillin-1 immunoblot analysis. Induction of pluripotent markers, survival and in vitro tube formation was enhanced in target cells receiving ESC exosomes indicating therapeutic potential of mES Ex. mES Ex administration resulted in enhanced neovascularization, cardiomyocyte survival and reduced fibrosis post infarction consistent with resurgence of cardiac proliferative response. Importantly, mES Ex mediated considerable enhancement of cardiac progenitor cell (CPC) survival, proliferation and cardiac commitment concurrent with increased c-kit+ CPCs in vivo 4 weeks after mES Ex transfer. miRNA Array analysis of ESC and MEF exosomes revealed significantly high expression of miR290-295 cluster in the ESC exosomes compared to MEF exosomes. The underlying beneficial effect of mES Ex was tied to delivery of ESC miR-294 to the heart and in particular CPCs thereby promoting CPC survival and proliferation as analyzed by FACS based cell death analysis and CyQuant assay respectively. Interestingly, enhanced G1/S transition was observed in CPCs treated with miR-294 in conjunction with significant reduction of G1 phase. Conclusion: In conclusion, mES Ex provide a novel cell free system for cardiac regeneration with the ability to modulate both cardiomyocyte and CPC based repair programs in the heart thereby avoiding the risk of teratoma formation associated with ESCs.


2020 ◽  
Author(s):  
Hui Guo ◽  
Jianping Zou ◽  
Ling Zhou ◽  
Yan He ◽  
Miao Feng ◽  
...  

Abstract Background:Nucleolar and spindle associated protein (NUSAP1) is involved in tumor initiation, progression and metastasis. However, there are limited studies regarding the role of NUSAP1 in gastric cancer (GC). Methods: The expression profile and clinical significance of NUSAP1 in GC were analysed in online database using GEPIA, Oncomine and KM plotter, which was further confirmed in clinical specimens.The functional role of NUSAP1 were detected utilizing in vitro and in vivo assays. Western blotting, qRT-PCR, the cycloheximide-chase, immunofluorescence staining and Co-immunoprecipitaion (Co-IP) assays were performed to explore the possible molecular mechanism by which NUSAP1 stabilizes YAP protein. Results:In this study, we found that the expression of NUSAP1 was upregulated in GC tissues and correlates closely with progression and prognosis. Additionally, abnormal NUSAP1 expression promoted malignant behaviors of GC cells in vitro and in a xenograft model. Mechanistically, we discovered that NUSAP1 physically interacts with YAP and furthermore stabilizes YAP protein expression, which induces the transcription of Hippo pathway downstream target genes. Furthermore, the effects of NUSAP1 on GC cell growth, migration and invasion were mainly mediated by YAP. Conclusions:Our data demonstrates that the novel NUSAP1-YAP axis exerts an critical role in GC tumorigenesis and progression, and therefore could provide a novel therapeutic target for GC treatment.


Sign in / Sign up

Export Citation Format

Share Document