scholarly journals A proline rich protein from the gingival seal around teeth exhibits antimicrobial properties against Porphyromonas gingivalis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aurélien Fouillen ◽  
Charline Mary ◽  
Katia Julissa Ponce ◽  
Pierre Moffatt ◽  
Antonio Nanci

AbstractThe gingival seal around teeth prevents bacteria from destroying the tooth-supporting tissues and disseminating throughout the body. Porphyromonas gingivalis, a major periodontopathogen, degrades components of the specialized extracellular matrix that mediates attachment of the gingiva to the tooth. Of these, secretory calcium-binding phosphoprotein proline-glutamine rich 1 (SCPPPQ1) protein has a distinctive resistance to degradation, suggesting that it may offer resistance to bacterial attack. In silico analysis of its amino acid sequence was used to explore its molecular characteristics and to predict its two- and three-dimensional structure. SCPPPQ1 exhibits similarities with both proline-rich and cationic antimicrobial proteins, suggesting a putative antimicrobial potential. A combination of imaging approaches showed that incubation with 20 μM of purified SCPPPQ1 decrease bacterial number (p < 0.01). Fluorescence intensity decreased by 70% following a 2 h incubation of Porphyromonas gingivalis with the protein. Electron microscopy analyses revealed that SCPPPQ1 induced bacterial membrane disruption and breaches. While SCPPPQ1 has no effect on mammalian cells, our results suggest that it is bactericidal to Porphyromonas gingivalis, and that this protein, normally present in the gingival seal, may be exploited to maintain a healthy seal and prevent systemic dissemination of bacteria.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charline Mary ◽  
Aurélien Fouillen ◽  
Pierre Moffatt ◽  
Dainelys Guadarrama Bello ◽  
Rima M. Wazen ◽  
...  

AbstractThe mouth environment comprises the second most significant microbiome in the body, and its equilibrium is critical in oral health. Secretory calcium-binding phosphoprotein proline-glutamine rich 1 (SCPPPQ1), a protein normally produced by the gingival epithelium to mediate its attachment to teeth, was suggested to be bactericidal. Our aim was to further explore the antibacterial potential of human SCPPPQ1 by characterizing its mode of action and identifying its active portions. In silico analysis showed that it has molecular parallels with antimicrobial peptides. Incubation of Porphyromonasgingivalis, a major periodontopathogen, with the full-length protein resulted in decrease in bacterial number, formation of aggregates and membrane disruptions. Analysis of SCPPPQ1-derived peptides indicated that these effects are sustained by specific regions of the molecule. Altogether, these data suggest that human SCPPPQ1 exhibits antibacterial capacity and provide new insight into its mechanism of action.


Author(s):  
Almog Hershko Rimon ◽  
Oded Livnah ◽  
Inna Rozman Grinberg ◽  
Lizett Ortiz de Ora ◽  
Oren Yaniv ◽  
...  

A novel member of the family 3 carbohydrate-binding modules (CBM3s) is encoded by a gene (Cthe_0271) in Clostridium thermocellum which is the most highly expressed gene in the bacterium during its growth on several types of biomass substrates. Surprisingly, CtCBM3-0271 binds to at least two different types of xylan, instead of the common binding of CBM3s to cellulosic substrates. CtCBM3-0271 was crystallized and its three-dimensional structure was solved and refined to a resolution of 1.8 Å. In order to learn more about the role of this type of CBM3, a comparative study with its orthologue from Clostridium clariflavum (encoded by the Clocl_1192 gene) was performed, and the three-dimensional structure of CcCBM3-1192 was determined to 1.6 Å resolution. Carbohydrate binding by CcCBM3-1192 was found to be similar to that by CtCBM3-0271; both exhibited binding to xylan rather than to cellulose. Comparative structural analysis of the two CBM3s provided a clear functional correlation of structure and binding, in which the two CBM3s lack the required number of binding residues in their cellulose-binding strips and thus lack cellulose-binding capabilities. This is an enigma, as CtCBM3-0271 was reported to be a highly expressed protein when the bacterium was grown on cellulose. An additional unexpected finding was that CcCBM3-1192 does not contain the calcium ion that was considered to play a structural stabilizing role in the CBM3 family. Despite the lack of calcium, the five residues that form the calcium-binding site are conserved. The absence of calcium results in conformational changes in two loops of the CcCBM3-1192 structure. In this context, superposition of the non-calcium-binding CcCBM3-1192 with CtCBM3-0271 and other calcium-binding CBM3s reveals a much broader two-loop region in the former compared with CtCBM3-0271.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mark Terasaki ◽  
Jason Cory Brunson ◽  
Justin Sardi

AbstractThe capillary network of the kidney glomerulus filters small molecules from the blood. The glomerular 3D structure should help to understand its function, but it is poorly characterized. We therefore devised a new approach in which an automated tape collecting microtome (ATUM) was used to collect 0.5 μm thick serial sections from fixed mouse kidneys. The sections were imaged by scanning electron microscopy at ~ 50 nm/pixel resolution. With this approach, 12 glomeruli were reconstructed at an x–y–z resolution ~ 10 × higher than that of paraffin sections. We found a previously undescribed no-cross zone between afferent and efferent branches on the vascular pole side; connections here would allow blood to exit without being adequately filtered. The capillary diameters throughout the glomerulus appeared to correspond with the amount of blood flow within them. The shortest path (minimum number of branches to travel from afferent to efferent arterioles) is relatively independent of glomerular size and is present primarily on the vascular pole size. This suggests that new branches and longer paths form on the urinary pole side. Network analysis indicates that the glomerular network does not form by repetitive longitudinal splitting of capillaries. Thus the 3D structure of the glomerular capillary network provides useful information with which to understand glomerular function. Other tissue structures in the body may benefit from this new three dimensional approach.


Diseases ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 24 ◽  
Author(s):  
Neha Joshi ◽  
Atchaya Raveendran ◽  
Shirisha Nagotu

Proper folding to attain a defined three-dimensional structure is a prerequisite for the functionality of a protein. Improper folding that eventually leads to formation of protein aggregates is a hallmark of several neurodegenerative disorders. Loss of protein homeostasis triggered by cellular stress conditions is a major contributing factor for the formation of these toxic aggregates. A conserved class of proteins called chaperones and co-chaperones is implicated in maintaining the cellular protein homeostasis. Expanding the body of evidence highlights the role of chaperones as central mediators in the formation, de-aggregation and degradation of the aggregates. Altered expression and function of chaperones is associated with many neurodegenerative diseases including Parkinson’s disease. Several studies indicate that chaperones are at the center of the cause and effect cycle of this disease. An overview of the various chaperones that are associated with homeostasis of Parkinson’s disease-related proteins and their role in pathogenicity will be discussed in this review.


2002 ◽  
Vol 80 (1) ◽  
pp. 137-168

Sixty-three abstracts are presented from the 5th International Conference on Lactoferrin "Structure, Function and Applications" in Banff, Alberta. The conference focused on lactoferrin’s three-dimensional structure, antimicrobial properties, immunological effects, potential use in cancer treatment, gene expression regulation, and receptors.


2021 ◽  
Vol 58 (02) ◽  
pp. 137-148
Author(s):  
J Girija ◽  
S Kamalasundari ◽  
G Hemalatha ◽  
T Umamaheswari

Meat is a non-vegetarian food and is considered as a good source of quality nutrients. Though meat protein provide the required content of good quality protein for the body, they are also associated with higher cholesterol and fat content, which prove to be a leading cause of serious health issues. This became the primary reason for increase in a shift in demands for plant-based protein source foods. The other reason is environmental impact of animal derived products. Meat analogues are plant-based good quality protein source of food that tastes like meat protein, and texture resemble that of meat. These plant-based meat analogues have some amount of anti-nutrients and allergic compounds, but they can be successfully removed by employing certain processing methods and resemble meat in its functionality properties. This approach of mimicking the plantbased foods to resemble meat involves understanding of the biochemical composition and three-dimensional structure of meat, and replicating those qualities using plant-based ingredients. In the current scenario, the best suitable methods of manufacturing meat analogue are by extrusion and structuring techniques. The meat analogues satisfy the need of meat for both vegetarians and non-vegetarians. This review attempts to outline the different manufacturing processes of meat analogue using plant-based foods, and to analyse the best suitable method.


1984 ◽  
Vol 62 (6) ◽  
pp. 434-442 ◽  
Author(s):  
Joe D. J. O'Neil ◽  
Keith J. Dorrington ◽  
Theo Hofmann

The structure and conformations of pig intestinal Ca-binding protein (CaBP) have been studied by terbium luminescence enhancement and circular dichroism. The two cation-binding sites bind Tb3+ sequentially; the affinity of the first site is > 107 M−1 and the affinity of the second site is approximately 105 M−1. Filling of the first site enhances the fluorescence of the single tyrosine residue, whereas Tb3+ in the second site quenches the fluorescence. Excitation spectra of the Tb3+-bound forms of CaBP show that considerable energy transfer takes place from phenylalanine residues to the bound Tb3+, although some transfer from tyrosine is also detected. The sequence in which the sites are filled was deduced from these results and the published three-dimensional structure of the cow intestinal CaBP. Tb3+ bound approximately 20 Å (1 Å = 0.1 nm) from the tyrosine induced a large increase in the optical activity of this residue. We argue that a potentially important conformational change is induced in CaBP by cation binding.


Sign in / Sign up

Export Citation Format

Share Document