scholarly journals Development of brain atlases for early-to-middle adolescent collision-sport athletes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yukai Zou ◽  
Wenbin Zhu ◽  
Ho-Ching Yang ◽  
Ikbeom Jang ◽  
Nicole L. Vike ◽  
...  

AbstractHuman brains develop across the life span and largely vary in morphology. Adolescent collision-sport athletes undergo repetitive head impacts over years of practices and competitions, and therefore may exhibit a neuroanatomical trajectory different from healthy adolescents in general. However, an unbiased brain atlas targeting these individuals does not exist. Although standardized brain atlases facilitate spatial normalization and voxel-wise analysis at the group level, when the underlying neuroanatomy does not represent the study population, greater biases and errors can be introduced during spatial normalization, confounding subsequent voxel-wise analysis and statistical findings. In this work, targeting early-to-middle adolescent (EMA, ages 13–19) collision-sport athletes, we developed population-specific brain atlases that include templates (T1-weighted and diffusion tensor magnetic resonance imaging) and semantic labels (cortical and white matter parcellations). Compared to standardized adult or age-appropriate templates, our templates better characterized the neuroanatomy of the EMA collision-sport athletes, reduced biases introduced during spatial normalization, and exhibited higher sensitivity in diffusion tensor imaging analysis. In summary, these results suggest the population-specific brain atlases are more appropriate towards reproducible and meaningful statistical results, which better clarify mechanisms of traumatic brain injury and monitor brain health for EMA collision-sport athletes.

2020 ◽  
Author(s):  
Gaelle E. Doucet ◽  
Loic Labache ◽  
Paul M. Thompson ◽  
Marc Joliot ◽  
Sophia Frangou ◽  
...  

AbstractCurrently, several human brain functional atlases are used to define the spatial constituents of the resting-state networks (RSNs). However, the only brain atlases available are derived from samples of young adults. As brain networks are continuously reconfigured throughout life, the lack of brain atlases derived from older populations may influence RSN results in late adulthood. To address this gap, the aim of the study was to construct a reliable brain atlas derived only from older participants. We leveraged resting-state functional MRI data from three cohorts of healthy older adults (total N=563; age=55-95years) and a younger-adult cohort (N=128; age=18-35 years). We identified the major RSNs and their subdivisions across all older-adult cohorts. We demonstrated high spatial reproducibility of these RSNs with an average spatial overlap of 67%. Importantly, the RSNs derived from the older-adult cohorts were spatially different from those derived from the younger-adult cohort (p=2.3×10−3). Lastly, we constructed a novel brain atlas, called Atlas55+, which includes the consensus of the major RSNs and their subdivisions across the older-adult cohorts. Thus, Atlas55+ provides a reliable age-appropriate template for RSNs in late adulthood and is publicly available. Our results confirm the need for age-appropriate functional atlases for studies investigating aging-related brain mechanisms.


2019 ◽  
Author(s):  
Sarah Hui Wen Yao ◽  
Joseph Yuan-Mou Yang ◽  
Bonnie Alexander ◽  
Michelle Hao Wu ◽  
Claire E. Kelly ◽  
...  

AbstractBackgroundUnderstanding typically developing infant brain structure is crucial in investigating neurological disorders of early childhood. Brain atlases providing standardised identification of neonatal brain regions are key in such investigations. Our previously developed Melbourne Children’s Regional Infant Brain (M-CRIB) and M-CRIB 2.0 neonatal brain atlases provide standardised parcellation of 100 and 94 brain regions respectively, including cortical, subcortical, and cerebellar regions. The aim of this study was to extend the M-CRIB atlas coverage to include 54 white matter regions.MethodsParticipants were ten healthy term-born neonates who comprised the sample for the M-CRIB and M-CRIB 2.0 atlases. WM regions were manually segmented on T2 images and co-registered diffusion tensor imaging-based, direction-encoded colour maps. Our labelled regions are based on those in the JHU-neonate-SS atlas, but differ in the following ways: 1) we included five corpus callosum subdivisions instead of a left / right division; 2) we included a left / right division for the middle cerebellar peduncle; and 3) we excluded the three brainstem divisions. All segmentations were reviewed and approved by a paediatric radiologist and a neurosurgery research fellow for anatomical accuracy.ResultsThe resulting neonatal WM atlas comprises 54 WM regions: 24 paired regions, and six unpaired regions comprising five corpus callosum subdivisions and one pontine crossing tract. Detailed protocols for manual WM parcellations are provided, and the M-CRIB-WM atlas is presented together with the existing M-CRIB and M-CRIB 2.0 cortical, subcortical and cerebellar parcellations in ten individual neonatal MRI datasets.ConclusionThe updated M-CRIB atlas including the WM parcellations will be made publicly available. The atlas will be a valuable tool that will help facilitate neuroimaging research into neonatal WM development in both healthy and diseased states.


2020 ◽  
Author(s):  
Gaelle E Doucet ◽  
Loic Labache ◽  
Paul M Thompson ◽  
Marc Joliot ◽  
Sophia Frangou ◽  
...  

Abstract Currently, several human brain functional atlases are used to define the spatial constituents of the resting-state networks (RSNs). However, the only brain atlases available are derived from samples of young adults. As brain networks are continuously reconfigured throughout life, the lack of brain atlases derived from older populations may influence RSN results in late adulthood. To address this gap, the aim of the study was to construct a reliable brain atlas derived only from older participants. We leveraged resting-state functional magnetic resonance imaging data from three cohorts of healthy older adults (total N = 563; age = 55–95 years) and a younger-adult cohort (N = 128; age = 18–35 years). We identified the major RSNs and their subdivisions across all older-adult cohorts. We demonstrated high spatial reproducibility of these RSNs with an average spatial overlap of 67%. Importantly, the RSNs derived from the older-adult cohorts were spatially different from those derived from the younger-adult cohort (P = 2.3 × 10−3). Lastly, we constructed a novel brain atlas, called Atlas55+, which includes the consensus of the major RSNs and their subdivisions across the older-adult cohorts. Thus, Atlas55+ provides a reliable age-appropriate template for RSNs in late adulthood and is publicly available. Our results confirm the need for age-appropriate functional atlases for studies investigating aging-related brain mechanisms.


2010 ◽  
Vol 10 ◽  
pp. 135-144 ◽  
Author(s):  
Hao Huang

The human brain anatomy is characterized by dramatic structural changes during fetal development. It is extraordinarily complex and yet its origin is a simple tubular structure. Revealing detailed anatomy at different stages of brain development not only aids in understanding this highly ordered process, but also provides clues to detect abnormalities caused by genetic or environmental factors. However, anatomical studies of human brain development during the fetal period are surprisingly scarce and histology-based atlases have become available only recently. Diffusion tensor imaging (DTI) measures water diffusion to delineate the underlying neural structures. The high contrasts derived from DTI can be used to establish the brain atlas. With DTI tractography, coherent neural structures, such as white matter tracts, can be three-dimensionally reconstructed. The primary eigenvector of the diffusion tensor can be further explored to characterize microstructures in the cerebral wall of the developmental brains. In this mini-review, the application of DTI in order to reveal the structures of developmental fetal brains has been reviewed in the above-mentioned aspects. The fetal brain DTI provides a unique insight for delineating the neural structures in both macroscopic and microscopic levels. The resultant DTI database will provide structural guidance for the developmental study of human fetal brains in basic neuroscience, and reference standards for diagnostic radiology of premature newborns.


2021 ◽  
Vol 22 (13) ◽  
pp. 6858
Author(s):  
Fanny Gaudel ◽  
Gaëlle Guiraudie-Capraz ◽  
François Féron

Animals strongly rely on chemical senses to uncover the outside world and adjust their behaviour. Chemical signals are perceived by facial sensitive chemosensors that can be clustered into three families, namely the gustatory (TASR), olfactory (OR, TAAR) and pheromonal (VNR, FPR) receptors. Over recent decades, chemoreceptors were identified in non-facial parts of the body, including the brain. In order to map chemoreceptors within the encephalon, we performed a study based on four brain atlases. The transcript expression of selected members of the three chemoreceptor families and their canonical partners was analysed in major areas of healthy and demented human brains. Genes encoding all studied chemoreceptors are transcribed in the central nervous system, particularly in the limbic system. RNA of their canonical transduction partners (G proteins, ion channels) are also observed in all studied brain areas, reinforcing the suggestion that cerebral chemoreceptors are functional. In addition, we noticed that: (i) bitterness-associated receptors display an enriched expression, (ii) the brain is equipped to sense trace amines and pheromonal cues and (iii) chemoreceptor RNA expression varies with age, but not dementia or brain trauma. Extensive studies are now required to further understand how the brain makes sense of endogenous chemicals.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Thomas G. Di Virgilio ◽  
Magdalena Ietswaart ◽  
Ragul Selvamoorthy ◽  
Angus M. Hunter

Abstract Background The suitability of corticomotor inhibition and corticospinal excitability to measure brain health outcomes and recovery of sport-related head impact (concussion and subconcussion) depends on good inter-day reliability, which is evaluated in this study. Transcranial magnetic stimulation (TMS) reliability in soccer players is assessed by comparing soccer players, for whom reliability on this measure may be reduced due to exposure to head impacts, to generally active individuals not engaged in contact sport. Methods TMS-derived corticomotor inhibition and corticospinal excitability were recorded from the rectus femoris muscle during two testing sessions, spaced 1–2 weeks apart in 19 soccer players (SOC—age 22 ± 3 years) and 20 generally active (CON—age 24 ± 4 years) healthy volunteers. Inter-day reliability between the two time points was quantified by using intra-class correlation coefficients (ICC). Intra-group reliability and group differences on actual measurement values were also explored. Results Good inter-day reliability was evident for corticomotor inhibition (ICCSOC = 0.61; ICCCON = 0.70) and corticospinal excitability (ICCSOC = 0.59; ICCCON = 0.70) in both generally active individuals and soccer players routinely exposed to sport-related head impacts. Corticomotor inhibition showed lower coefficients of variation than excitability for both groups (InhibSOC = 15.2%; InhibCON = 9.7%; ExcitabSOC = 41.6%; ExcitabCON = 39.5%). No group differences between soccer players and generally active individuals were found on the corticomotor inhibition value (p > 0.05), but levels of corticospinal excitability were significantly lower in soccer players (45.1 ± 20.8 vs 85.4 ± 6.2%Mmax, p < 0.0001). Corticomotor inhibition also showed excellent inter-rater reliability (ICC = 0.87). Conclusions Corticomotor inhibition and corticospinal excitability are stable and maintain good degrees of reliability when assessed over different days in soccer players, despite their routine exposure to head impacts. However, based on intra-group reliability and group differences of the levels of excitability, we conclude that corticomotor inhibition is best suited for the evaluation of neuromuscular alterations associated with head impacts in contact sports.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jinyu Zang ◽  
Yuanyuan Huang ◽  
Lingyin Kong ◽  
Bingye Lei ◽  
Pengfei Ke ◽  
...  

Recently, machine learning techniques have been widely applied in discriminative studies of schizophrenia (SZ) patients with multimodal magnetic resonance imaging (MRI); however, the effects of brain atlases and machine learning methods remain largely unknown. In this study, we collected MRI data for 61 first-episode SZ patients (FESZ), 79 chronic SZ patients (CSZ) and 205 normal controls (NC) and calculated 4 MRI measurements, including regional gray matter volume (GMV), regional homogeneity (ReHo), amplitude of low-frequency fluctuation and degree centrality. We systematically analyzed the performance of two classifications (SZ vs NC; FESZ vs CSZ) based on the combinations of three brain atlases, five classifiers, two cross validation methods and 3 dimensionality reduction algorithms. Our results showed that the groupwise whole-brain atlas with 268 ROIs outperformed the other two brain atlases. In addition, the leave-one-out cross validation was the best cross validation method to select the best hyperparameter set, but the classification performances by different classifiers and dimensionality reduction algorithms were quite similar. Importantly, the contributions of input features to both classifications were higher with the GMV and ReHo features of brain regions in the prefrontal and temporal gyri. Furthermore, an ensemble learning method was performed to establish an integrated model, in which classification performance was improved. Taken together, these findings indicated the effects of these factors in constructing effective classifiers for psychiatric diseases and showed that the integrated model has the potential to improve the clinical diagnosis and treatment evaluation of SZ.


Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Aftab Ahmad ◽  
Khurshid Khan ◽  
Ghazala Basir ◽  
Carol Derksen ◽  
Ashfaq Shuaib ◽  
...  

Background and objective: Middle cerebral artery (MCA) Lindegaard ratio (LR) has been used as indicator of moderate to severe vasospasm (VSP) following subarachnoid hemorrhage (SAH). However there have been many criticisms about the ability to detect impending vasospasm using Transcranial Doppler (TCD). The purpose of this study was to determine the correlation between TCD Mean Flow Velocities (MFV) and angiographic VSP after aneurysmal SAH using LR of several anterior circulation vessels. Methods: The study population included prospective collected data of 134 patients with aneurysmal SAH admitted to University of Alberta hospital from January 2006 to December 2008. Complete TCD was performed daily from day 2 to 14 from symptoms onset. All patients underwent cerebral angiography on admission and within 7 days following onset of symptoms. The M1, M2 MCA, ACA and intracranial ICA/ipsilateral extra cranial ICA velocity ratios (LR) were calculated and correlation was made with the presence of angiographic vasospasm (defined as more than one-third luminal narrowing). Then, anterior circulation LR was defined as the highest LR in the ipsilateral anterior circulation arteries. Moderate to severe VSP was defined as LR > 3. Results: Results are shown in table. The probability of VSP in the presence of one anterior circulation vessel LR > 3 is 14 % (2/14), 2 vessels LR >3 (4/16. 16 %), 3 vessels LR > 3 (3/6, 50 %) and 4 vessels LR >3 (5/5 = 100 %). (P< 0.001) Conclusion: LR of M2 MCA has higher sensitivity compared to other vessels and ACA LR has less sensitivity but more specificity whereas the rest of anterior circulation LR had modest predictive value. The likelihood of VSP increases as more number of vessels in anterior circulation shows LR>3. LR should not be interpreted in a blind fashion to the rest of TCD MFV numbers.


Sign in / Sign up

Export Citation Format

Share Document