scholarly journals CircPVT1 attenuates negative regulation of NRAS by let-7 and drives cancer cells towards oncogenicity

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joshua Miguel C. Danac ◽  
Reynaldo L. Garcia

AbstractCircular RNAs have emerged as functional regulatory molecules whose aberrant expression has been linked to diverse pathophysiological processes. Here, we report that circPVT1 interferes with let-7 binding to NRAS, confirming this axis as one route by which circPVT1 can instigate an oncogenic program in A549 lung cancer cells and HCT116 colorectal cancer cells. CircPVT1 knockdown significantly reduced NRAS levels and attenuated cancer hallmark phenotypes such as proliferation, migration, resistance to apoptosis, cytoskeletal disorganization, and epithelial-mesenchymal transition. The effects of circPVT1 knockdown were at least partially rescued by blocking binding of let-7 to NRAS 3′UTR with a target protector, suggesting that a circPVT1/let-7/NRAS axis exists and acts in cells to reverse NRAS downregulation and favor oncogenicity. While the phenotypic effects of circPVT1 knockdown may be attributable to the global action of circPVT1, the target protection assays resolved the relative contribution of the circPVT1/let-7/NRAS axis specifically.

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 801
Author(s):  
Joyce Y. Buikhuisen ◽  
Patricia M. Gomez Barila ◽  
Arezo Torang ◽  
Daniëlle Dekker ◽  
Joan H. de Jong ◽  
...  

Colorectal cancer (CRC) is a heterogeneous disease that can currently be subdivided into four distinct consensus molecular subtypes (CMS) based on gene expression profiling. The CMS4 subtype is marked by high expression of mesenchymal genes and is associated with a worse overall prognosis compared to other CMSs. Importantly, this subtype responds poorly to the standard therapies currently used to treat CRC. We set out to explore what regulatory signalling networks underlie the CMS4 phenotype of cancer cells, specifically, by analysing which kinases were more highly expressed in this subtype compared to others. We found AKT3 to be expressed in the cancer cell epithelium of CRC specimens, patient derived xenograft (PDX) models and in (primary) cell cultures representing CMS4. Importantly, chemical inhibition or knockout of this gene hampers outgrowth of this subtype, as AKT3 controls expression of the cell cycle regulator p27KIP1. Furthermore, high AKT3 expression was associated with high expression of epithelial-mesenchymal transition (EMT) genes, and this observation could be expanded to cell lines representing other carcinoma types. More importantly, this association allowed for the identification of CRC patients with a high propensity to metastasise and an associated poor prognosis. High AKT3 expression in the tumour epithelial compartment may thus be used as a surrogate marker for EMT and may allow for a selection of CRC patients that could benefit from AKT3-targeted therapy.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 172
Author(s):  
Izabela Papiewska-Pająk ◽  
Patrycja Przygodzka ◽  
Damian Krzyżanowski ◽  
Kamila Soboska ◽  
Izabela Szulc-Kiełbik ◽  
...  

During metastasis, cancer cells undergo phenotype changes in the epithelial-mesenchymal transition (EMT) process. Extracellular vesicles (EVs) released by cancer cells are the mediators of intercellular communication and play a role in metastatic process. Knowledge of factors that influence the modifications of the pre-metastatic niche for the migrating carcinoma cells is important for prevention of metastasis. We focus here on how cancer progression is affected by EVs released from either epithelial-like HT29-cells or from cells that are in early EMT stage triggered by Snail transcription factor (HT29-Snail). We found that EVs released from HT29-Snail, as compared to HT29-pcDNA cells, have a different microRNA profile. We observed the presence of interstitial pneumonias in the lungs of mice injected with HT29-Snail cells and the percent of mice with lung inflammation was higher after injection of HT29-Snail-EVs. Incorporation of EVs released from HT29-pcDNA, but not released from HT29-Snail, leads to the increased secretion of IL-8 from macrophages. We conclude that Snail modifications of CRC cells towards more invasive phenotype also alter the microRNA cargo of released EVs. The content of cell-released EVs may serve as a biomarker that denotes the stage of CRC and EVs-specific microRNAs may be a target to prevent cancer progression.


2019 ◽  
Vol 10 (1) ◽  
pp. 191-202 ◽  
Author(s):  
Bornita Das ◽  
Dona Sinha

DADS reflected the potential of reversal of FN-induced EMT by inhibition of Wnt signaling in A549 lung cancer cells.


Sign in / Sign up

Export Citation Format

Share Document