scholarly journals Application of the antitussive agents oxelaidin and butamirate as anti-glioma agents

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sook-Ja Lee ◽  
Seon-Yong Yeom ◽  
Jee-Young Lee ◽  
Chaehwa Park

AbstractGlioblastoma (GBM) is an aggressive brain tumor with a strong tendency of relapse and resistance to chemotherapy, but we currently lack non-toxic agents that effectively treat GBM. In this study, high-throughput screening of FDA-approved drugs was performed to identify safe and effective molecules and test their effect on GBM cell lines, LN229, U87 and T98G. Cough suppressants, oxelaidin and butamirate inhibited GBM growth. A Ras family GTPase, Ras-related associated with diabetes (RRAD), contributes to activation of STAT3, which is essential for survival and growth of many cancer types. Interestingly, oxelaidin and butamirate did not affect proliferation in RRAD negative GBM cells. Docking simulation analyses revealed selective interactions between oxelaidin and RRAD. The mechanism by which butamirate and oxelaidin inhibits GBM cell growth involves the suppression of STAT3 transcriptional activity, leading to down-regulation of cyclin D1 and survivin. In addition, components of RRAD-associated signaling cascades, including p-EGFR, p-Akt, and p-STAT3, were inhibited upon oxelaidin treatment. Intraperitoneal administration of oxelaidin or butamirate markedly suppressed tumor growth in a glioblastoma xenograft mouse model without significant adverse effects. Our collective findings indicate that oxelaidin and butamirate exert anti-tumor effects in glioblastoma, supporting its utility as a novel therapeutic candidate for glioblastoma.

2020 ◽  
Vol 48 (22) ◽  
pp. 12618-12631
Author(s):  
Mengbiao Guo ◽  
Zhen-Dong Xiao ◽  
Zhiming Dai ◽  
Ling Zhu ◽  
Hang Lei ◽  
...  

Abstract The majority of the human genome encodes long noncoding RNA (lncRNA) genes, critical regulators of various cellular processes, which largely outnumber protein-coding genes. However, lncRNA-involved fusions have not been surveyed and characterized yet. Here, we present a systematic study of the lncRNA fusion landscape across cancer types and identify >30 000 high-confidence tumor-specific lncRNA fusions (using 8284 tumor and 6946 normal samples). Fusions positively correlated with DNA damage and cancer stemness and were specifically low in microsatellite instable (MSI)-High or virus-infected tumors. Moreover, fusions distribute differently among cancer molecular subtypes, but with shared enrichment in tumors that are microsatellite stable (MSS), with high somatic copy number alterations (SCNA), and with poor survival. Importantly, we find a potentially new mechanism, mediated by enhancer RNAs (eRNA), which generates secondary fusions that form densely connected fusion networks with many fusion hubs targeted by FDA-approved drugs. Finally, we experimentally validate functions of two tumor-promoting chimeric proteins derived from mRNA-lncRNA fusions, KDM4B–G039927 and EPS15L1–lncOR7C2–1. The EPS15L1 fusion protein may regulate (Gasdermin E) GSDME, critical in pyroptosis and anti-tumor immunity. Our study completes the fusion landscape in cancers, sheds light on fusion mechanisms, and enriches lncRNA functions in tumorigenesis and cancer progression.


Author(s):  
Praveen Thaggikuppe Krishnamurthy

: The Coronavirus Disease 2019, a pandemic caused by novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is seriously affecting global health and the economy. As the vaccine development takes time, the current research is focused on repurposing FDA approved drugs against the viral target proteins. This review discusses the current understanding of SARS-CoV-2 virology, its target structural proteins (S- glycoprotein), non-structural proteins (3- chymotrypsin-like protease, papain-like protease, RNA-dependent RNA polymerase, and helicase) and accessory proteins, drug discovery strategies (drug repurposing, artificial intelligence, and high-throughput screening), and the current status of antiviral drug development.


2018 ◽  
Vol 38 (Suppl_1) ◽  
Author(s):  
Hui-Ping Lin ◽  
Pushpankur Ghoshal ◽  
Bhupesh Singla ◽  
Jessica L Faulkner ◽  
Mary C Shaw ◽  
...  

Mitochondrion ◽  
2014 ◽  
Vol 17 ◽  
pp. 116-125 ◽  
Author(s):  
Sunil Sahdeo ◽  
Alexey Tomilov ◽  
Kelly Komachi ◽  
Christine Iwahashi ◽  
Sandipan Datta ◽  
...  

2018 ◽  
Author(s):  
Peilin Wang ◽  
Yang Liu ◽  
Guangshun Zhang ◽  
Shaobo Wang ◽  
Jiao Guo ◽  
...  

ABSTRACTLassa virus (LASV) belongs to the Mammarenavirus genus (family Arenaviridae) and causes severe hemorrhagic fever in humans. At present, there are no Food and Drug Administration (FDA)-approved drugs or vaccines specific for LASV. Herein, high-throughput screening of an FDA-approved drug library was performed against LASV entry using a pseudo-type virus enveloping LASV glycoproteins. Two hit drugs, lacidipine and phenothrin, were identified as LASV entry inhibitors in the micromolar range. A mechanistic study revealed that both drugs inhibited LASV entry by blocking low-pH-induced membrane fusion. Moreover, lacidipine irreversibly bound to the LASV glycoprotein complex (GPC), resulting in virucidal activity. Adaptive mutant analyses demonstrated that replacement of T40, located in the ectodomain of the stable-signal peptide (SSP), with lysine (K) conferred LASV resistance to lacidipine without apparent loss of the viral growth profile. Furthermore, lacidipine showed antiviral activity and specificity against both LASV and the Guanarito virus (GTOV), which is also a category A new world arenavirus. Drug-resistant variants indicate that the V36M in ectodomain of SSP mutant and V436A in the transmembrane domain of GP2 mutant conferred GTOV resistance to lacidipine, suggesting that lacidipine might act via a novel mechanism other than calcium inhibition. This study shows that both lacidipine and phenothrin are candidates for LASV therapy, and the membrane-proximal external region of the GPC might provide an entry-targeted platform for inhibitors.


2020 ◽  
Author(s):  
ChangDong Lin ◽  
Yue Li ◽  
MengYa Yuan ◽  
MengWen Huang ◽  
Cui Liu ◽  
...  

SUMMARYCoronavirus Disease 2019 (COVID-19) spreads globally as a sever pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Cell entry of SARS-CoV-2 mainly depends on binding of the viral spike (S) proteins to angiotensin converting enzyme 2 (ACE2) on host cells. Therefore, repurposing of known drugs to inhibit S protein-ACE2 interaction could be a quick way to develop effective therapy for COVID-19. Using a high-throughput screening system to investigate the interaction between spike receptor binding domain (S-RBD) and ACE2 extracellular domain, we screened 3581 FDA-approved drugs and natural small molecules and identified ceftazidime as a potent compound to inhibit S-RBD–ACE2 interaction by binding to S-RBD. In addition to significantly inhibit S-RBD binding to HPAEpiC cells, ceftazidime efficiently prevented SARS-CoV-2 pseudovirus to infect ACE2-expressing 293T cells. The inhibitory concentration (IC50) was 113.2 μM, which is far below the blood concentration (over 300 μM) of ceftazidime in patients when clinically treated with recommended dose. Notably, ceftazidime is a drug clinically used for the treatment of pneumonia with minimal side effects compared with other antiviral drugs. Thus, ceftazidime has both anti-bacterial and anti-SARS-CoV-2 effects, which should be the first-line antibiotics used for the clinical treatment of COVID-19.


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Ryan P. Trombetta ◽  
Paul M. Dunman ◽  
Edward M. Schwarz ◽  
Stephen L. Kates ◽  
Hani A. Awad

ABSTRACTDrug repurposing offers an expedited and economical route to develop new clinical therapeutics in comparison to traditional drug development. Growth-based high-throughput screening is concomitant with drug repurposing and enables rapid identification of new therapeutic uses for investigated drugs; however, this traditional method is not compatible with microorganisms with abnormal growth patterns such asStaphylococcus aureussmall-colony variants (SCV). SCV subpopulations are auxotrophic for key compounds in biosynthetic pathways, which result in low growth rate. SCV formation is also associated with reduced antibiotic susceptibility, and the SCV’s ability to revert to the normal cell growth state is thought to contribute to recurrence ofS. aureusinfections. Thus, there is a critical need to identify antimicrobial agents that are potent against SCV in order to effectively treat chronic infections. Accordingly, here we describe adapting an adenylate kinase (AK)-based cell death reporter assay to identify members of a Food and Drug Administration (FDA)-approved drug library that display bactericidal activity againstS. aureusSCV. Four library members, daunorubicin, ketoconazole, rifapentine, and sitafloxacin, exhibited potent SCV bactericidal activity against a stableS. aureusSCV. Further investigation showed that sitafloxacin was potent against methicillin-susceptible and -resistantS. aureus, as well asS. aureuswithin an established biofilm. Taken together, these results demonstrate the ability to use the AK assay to screen small-molecule libraries for SCV bactericidal agents and highlight the therapeutic potential of sitafloxacin to be repurposed to treat chronicS. aureusinfections associated with SCV and/or biofilm growth states.IMPORTANCEConventional antibiotics fail to successfully treat chronic osteomyelitis, endocarditis, and device-related and airway infections. These recurring infections are associated with the emergence of SCV, which are recalcitrant to conventional antibiotics. Studies have investigated antibiotic therapies to treat SCV-related infections but have had little success, emphasizing the need to identify novel antimicrobial drugs. However, drug discovery is a costly and time-consuming process. An alternative strategy is drug repurposing, which could identify FDA-approved and well-characterized drugs that could have off-label utility in treating SCV. In this study, we adapted a high-throughput AK-based assay to identify 4 FDA-approved drugs, daunorubicin, ketoconazole, rifapentine, and sitafloxacin, which display antimicrobial activity againstS. aureusSCV, suggesting an avenue for drug repurposing in order to effectively treat SCV-related infections. Additionally, this screening paradigm can easily be adapted for other drug/chemical libraries to identify compounds bactericidal against SCV.


Oncogene ◽  
2021 ◽  
Author(s):  
Lu Wang ◽  
Du Liang ◽  
Xiao Xiong ◽  
Yusheng Lin ◽  
Jianlin Zhu ◽  
...  

AbstractSmoking is one of the most impactful lifestyle-related risk factors in many cancer types including esophageal squamous cell carcinoma (ESCC). As the major component of tobacco and e-cigarettes, nicotine is not only responsible for addiction to smoking but also a carcinogen. Here we report that nicotine enhances ESCC cancer malignancy and tumor-initiating capacity by interacting with cholinergic receptor nicotinic alpha 7 subunit (CHRNA7) and subsequently activating the JAK2/STAT3 signaling pathway. We found that aberrant CHRNA7 expression can serve as an independent prognostic factor for ESCC patients. In multiple ESCC mouse models, dextromethorphan and metformin synergistically repressed nicotine-enhanced cancer-initiating cells (CIC) properties and inhibited ESCC progression. Mechanistically, dextromethorphan non-competitively inhibited nicotine binding to CHRNA7 while metformin downregulated CHRNA7 expression by antagonizing nicotine-induced promoter DNA hypomethylation of CHRNA7. Since dextromethorphan and metformin are two safe FDA-approved drugs with minimal undesirable side-effects, the combination of these drugs has a high potential as either a preventive and/or a therapeutic strategy against nicotine-promoted ESCC and perhaps other nicotine-sensitive cancer types as well.


2021 ◽  
Author(s):  
Junyuan Cao ◽  
Yang Liu ◽  
Siqi Dong ◽  
Minmin Zhou ◽  
Jiao Guo ◽  
...  

The Lujo virus (LUJV) belongs to the Old World (OW) genus Mammarenavirus (family Arenaviridae); it is categorized as a biosafety level (BSL) 4 agent. Currently, there are no U.S. Food and Drug Administration (FDA)-approved drugs or vaccines specifically for LUJV or other pathogenic OW mammarenaviruses. Here, a high-throughput screening of an FDA-approved drug library was conducted using pseudotype viruses bearing LUJV envelope glycoprotein (GPC) to identify inhibitors of LUJV entry. Three hit compounds, trametinib, manidipine, and lercanidipine, were identified as LUJV entry inhibitors in the micromolar range. Mechanistic studies revealed that trametinib inhibited LUJV GPC-mediated membrane fusion by targeting C410 (located in the transmembrane (TM) domain), while manidipine and lercanidipine inhibited LUJV entry by acting as calcium channel blockers. Meanwhile, all three hits extended their antiviral spectra to the entry of other pathogenic mammarenaviruses. Furthermore, all three could inhibit the authentic prototype mammarenavirus, lymphocytic choriomeningitis virus (LCMV), and could prevent infection at the micromolar level. This study shows that trametinib, manidipine, and lercanidipine are candidates for LUJV therapy, and highlights the critical role of calcium in LUJV infection. The presented findings reinforce the notion that the key residue(s) located in the TM domain of GPC provide an entry-targeted platform for designing mammarenavirus inhibitors.


Sign in / Sign up

Export Citation Format

Share Document