scholarly journals Comparative antler proteome of sika deer from different developmental stages

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ranran Zhang ◽  
Yang Li ◽  
Xiumei Xing

AbstractAntler is a special bone tissue that has the ability to regenerate completely periodically. It is the fastest growing bone in the animal kingdom. Antler provides a valuable research model for bone growth and mineralization. Antler grows longitudinally by endochondral ossification with their growth center located in its tip. Many scholars have carried out detailed studies on morphology and gene expression of antler tip. However, few scholars have analyzed the protein expression patterns of antler tip at different development stages. This study used label-free proteomics approach to analyze the protein expression dynamics of the antler tip in six developmental periods (15, 25, 45, 65, 100 and 130 days after the previous antler cast) and costal cartilage. In result, 2052 proteins were confidently quantified, including 1937 antler proteins and 1044 costal cartilage proteins. Moreover, 913 antler core proteins and 132 antler-special proteins were obtained. Besides, the stages special proteins and differentially expressed proteins (DEPs) in different development stages were analyzed. A total of 875 DEPs were determined by one-way AVOVA. It is found that the growth period (15, 25, 45 and 65 days) showed more up-regulated protein including several chondrogenesis-associated proteins (collagen types II, collagen types XI, HAPLN1, PAPSS1 and PAPSS2). In ossification stages, the up-regulated proteins related with lysosome (CTSD, CTSB, MMP9, CAII) indicated that the antler has higher bone remodeling activity. Given the up-regulated expression of immune-related molecules (S100A7, CATHL7, LTF, AZU1, ELANE and MPO), we speculate that the local immune system may contribute to the ossification of antler tip. In conclusion, proteomics technology was used to deeply analyze the protein expression patterns of antler at different development stages. This provides a strong support for the research on the molecular regulation mechanism of rapid growth and ossification of velvet antler.

2021 ◽  
Author(s):  
Ranran Zhang ◽  
Xiumei Xing

Abstract Antler is a special bone tissue that has the ability to regenerate completely periodically. It is the fastest growing bone in the animal kingdom. Antler provides a valuable research model for bone growth and mineralization. Antler grows longitudinally by endochondral ossification with their growth center located in its tip. Many scholars have carried out detailed studies on morphology and gene expression of antler tip. However, few scholars have analyzed the protein expression patterns of antler tip at different development stages. This study used label-free proteomics approach to analyze the protein expression dynamics of the antler tip in 6 developmental periods (15, 25, 45, 65, 100 and 130 days after the previous antler cast) and costal cartilage. In result, 2052 proteins were confidently quantified, including 1,937 antler proteins and 1,044 costal cartilage proteins. Moreover, 913 antler core proteins and 132 antler-special proteins were obtained. Besides, the stages special proteins and differentially expressed proteins (DEPs) in different development stages were analyzed. A total of 875 DEPs were determined by one-way AVOVA. It is found that the growth period (15, 25, 45 and 65 days) showed more up-regulated protein including several chondrogenesis-associated proteins (collagen types II, collagen types XI, HAPLN1, PAPSS1 and PAPSS2). In ossification stages, the up-regulated proteins related with lysosome (CTSD, CTSB, MMP9, CAII) indicated that the antler has higher bone remodeling activity. Given the up-regulated expression of immune-related molecules (S100A7, CATHL7, LTF, AZU1, ELANE and MPO), we speculate that the local immune system may contribute to the ossification of antler tip. In conclusion, proteomics technology was used to deeply analyze the protein expression patterns of antler at different development stages. This provides a strong support for the research on the molecular regulation mechanism of rapid growth and ossification of velvet antler.


2012 ◽  
Vol 38 (3) ◽  
pp. 462
Author(s):  
Hui-Hui BI ◽  
Hua-Rui YANG ◽  
Jun-Hui MA ◽  
Lu-Xiang LIU ◽  
Cheng-She WANG ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zeyang Wang ◽  
Zhi Lv ◽  
Qian Xu ◽  
Liping Sun ◽  
Yuan Yuan

Abstract Background Epstein-Barr virus-associated gastric cancer (EBVaGC) is the most common EBV-related malignancy. A comprehensive research for the protein expression patterns in EBVaGC established by high-throughput assay remains lacking. In the present study, the protein profile in EBVaGC tissue was explored and related functional analysis was performed. Methods Epstein-Barr virus-encoded RNA (EBER) in situ hybridization (ISH) was applied to EBV detection in GC cases. Data-independent acquisition (DIA) mass spectrometry (MS) was performed for proteomics assay of EBVaGC. Functional analysis of identified proteins was conducted with bioinformatics methods. Immunohistochemistry (IHC) staining was employed to detect protein expression in tissue. Results The proteomics study for EBVaGC was conducted with 7 pairs of GC cases. A total of 137 differentially expressed proteins in EBV-positive GC group were identified compared with EBV-negative GC group. A PPI network was constructed for all of them, and several proteins with relatively high interaction degrees could be the hub genes in EBVaGC. Gene enrichment analysis showed they might be involved in the biological pathways related to energy and biochemical metabolism. Combined with GEO datasets, a highly associated protein (GBP5) with EBVaGC was screened out and validated with IHC staining. Further analyses demonstrated that GBP5 protein might be associated with clinicopathological parameters and EBV infection in GC. Conclusions The newly identified proteins with significant differences and potential central roles could be applied as diagnostic markers of EBVaGC. Our study would provide research clues for EBVaGC pathogenesis as well as novel targets for the molecular-targeted therapy of EBVaGC.


2015 ◽  
Vol 20 (2) ◽  
pp. 130-134 ◽  
Author(s):  
Mohamed A. Adly ◽  
Hanan A. Assaf ◽  
Shaima’a F. Abdel-Rady ◽  
Nagwa Sayed Ahmed ◽  
Mahmoud Rezk Abdelwahed Hussein

Background: Vitiligo is an idiopathic skin disease, characterized by circumscribed white macules or patches on the skin due to loss of the functional melanocytes. Glial cell line–derived neurotrophic factor (GDNF) and its cognate receptor (GFRα-1) are distal members of the transforming growth factor-β superfamily. GDNF, produced by the basal cell keratinocytes, is involved in the migration and differentiation of the melanocytes from the neural crest to the epidermis. This study examines the hypothesis that expression of GDNF protein and its cognate receptor GFRα-1 protein is altered in vitiliginous skin. Patients and Methods: To test our hypothesis, we examined the expression patterns of these proteins in vitiliginous and corresponding healthy (control) skin biopsies (20 specimens each) using immunoperoxidase staining techniques. Results: We found variations between the vitiliginous skin and healthy skin. In healthy skin, the expression of GDNF and GFRα-1 proteins was strong (basal cell keratinocytes and melanocytes), moderate (spinous layer), and weak (granular cell layer). In contrast, weak expression of GDNF protein was observed in all epidermal layers of vitiliginous skin. GFRα-1 protein expression was strong (basal cell keratinocytes and melanocytes), moderate (spinous layer), and weak (granular cell layer). In both healthy skin and vitiliginous skin, the expression of GDNF and GFRα-1 proteins was strong in the adnexal structures. Conclusions: We report, for the first time, decreased expression of GDNF proteins in the epidermal keratinocytes of vitiliginous skin. Our findings suggest possible pathogenetic roles for these proteins in the development of vitiligo. The clinical ramifications of these observations mandate further investigations.


1996 ◽  
Vol 316 (3) ◽  
pp. 985-992 ◽  
Author(s):  
Nadia Abdel WAHAB ◽  
Katherine HARPER ◽  
Roger M. MASON

Post-mitotic cultures of human mesangial cells were maintained in media containing 4–30 mM D-glucose for up to 28 days. Changes in mRNA and protein levels for specific macromolecules occurred between 7 and 14 days after initiating hyperglycaemic conditions. Slot blot analysis showed 2–3-fold increases in mRNAs for collagen type I, fibronectin, versican and perlecan, whereas mRNA for decorin was increased by up to 20-fold. Levels of mRNAs for biglycan and syndecan were unaffected by hyperglycaemic culture. Reverse transcriptase PCR (RT–PCR) confirmed that decorin mRNA levels are greatly elevated and also showed increased transcription of the TGF-β1 gene in hyperglycaemic cultures. Western analysis and ELISA indicated accumulations of collagen types I and III, laminin and fibronectin in the cell layers and media of hyperglycaemic cultures with increasing time. Type IV collagen did not accumulate in either compartment of hyperglycaemic mesangial cell cultures. Collagen types I, III, and fibronectin did not accumulate in the cell layers of hyperglycaemic human dermal fibroblasts, indicating a cell-specific response in mesangial cultures. Decorin and versican, but not biglycan, were increased in the hyperglycaemic mesangial cell culture media. There were no apparent changes in core proteins for decorin and biglycan in fibroblast media. Transforming growth factor β1 (TGF-β1) in hyperglycaemic mesangial cell cultures increased 5-fold after 7 days, but decreased thereafter to only approx. 2-fold after 28 days. The changes in TGF-β1 mRNA, as detected by RT–PCR, and protein followed one another closely.


2017 ◽  
Vol 142 (4) ◽  
pp. 246-259 ◽  
Author(s):  
Yunqing Zhu ◽  
Wenfang Zeng ◽  
Xiaobei Wang ◽  
Lei Pan ◽  
Liang Niu ◽  
...  

Pectins are synthesized and secreted to the cell wall as highly methyl-esterified polymers and demethyl-esterified by pectin methylesterases (PMEs), which are regulated by pectin methylesterase inhibitors (PMEIs). PMEs and PMEIs are involved in pectin degradation during fruit softening; however, the roles of the PME and PMEI gene families during fruit softening remain unclear. Here, 71 PME and 30 PMEI genes were identified in the peach (Prunus persica) genome and shown to be unevenly distributed on all eight chromosomes. The 71 PME genes comprised 36 Type-1 PMEs and 35 Type-2 PMEs. Transcriptome analysis showed that 11 PME and 15 PMEI genes were expressed during fruit ripening in melting flesh (MF) and stony-hard (SH) peaches. Three PME and five PMEI genes were expressed at higher levels in MF than in SH fruit and exhibited softening-associated expression patterns. Upstream regulatory cis elements of these genes related to hormone response, especially naphthaleneacetic acid and ethylene, were investigated. One PME (Prupe.7G192800) and two PMEIs (Prupe.1G114500 and Prupe.2G279800), and their promoters were identified as potential targets for future studies on the biochemical metabolism and regulation of fruit ripening. The comprehensive data generated in this study will improve our understanding of the PME and PMEI gene families in peach. However, further detailed investigation is necessary to elucidate the biochemical function and regulation mechanism of the PME and PMEI genes during peach fruit ripening.


2000 ◽  
Vol 44 (3) ◽  
pp. 320-332 ◽  
Author(s):  
Xueqing Wu ◽  
Barbara Ritter ◽  
Jan Henrik Schlattjan ◽  
Volkmar Lessmann ◽  
Rolf Heumann ◽  
...  

BioTechniques ◽  
2004 ◽  
Vol 36 (6) ◽  
pp. 1030-1037 ◽  
Author(s):  
Annika Spruessel ◽  
Garnet Steimann ◽  
Mira Jung ◽  
Sung A. Lee ◽  
Theresa Carr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document